home *** CD-ROM | disk | FTP | other *** search
/ Software of the Month Club 1997 March / Software of the Month Club 1997 March.iso / mac / Education / FunctionVisualizer / fv.tex < prev    next >
LaTeX Document  |  1995-06-18  |  27.3 KB  |  [TEXT/R*ch]

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text

This file was processed as: LaTeX Document (document/latex).

You can browse this item here: fv.tex

ConfidenceProgramDetectionMatch TypeSupport
100% dexvert LaTeX Document (document/latex) magic Supported
1% dexvert Text File (text/txt) fallback Supported
100% file LaTeX document text default
99% file LaTeX auxiliary file, ASCII text, with CR line terminators default
100% checkBytes Printable ASCII default
100% perlTextCheck Likely Text (Perl) default
100% detectItEasy Format: plain text[CR] default (weak)


id metadata
keyvalue
macFileType[TEXT]
macFileCreator[R*ch]



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 5c 6d 61 67 6e 69 66 69 | 63 61 74 69 6f 6e 3d 5c |\magnifi|cation=\|
|00000010| 6d 61 67 73 74 65 70 32 | 0d 5c 65 76 65 72 79 6d |magstep2|.\everym|
|00000020| 61 74 68 3d 7b 5c 64 69 | 73 70 6c 61 79 73 74 79 |ath={\di|splaysty|
|00000030| 6c 65 7d 0d 5c 70 61 72 | 73 6b 69 70 3d 33 70 74 |le}.\par|skip=3pt|
|00000040| 20 70 6c 75 73 20 33 70 | 74 0d 0d 5c 64 65 66 5c | plus 3p|t..\def\|
|00000050| 62 75 6c 6c 7b 24 5c 62 | 75 6c 6c 65 74 24 5c 71 |bull{$\b|ullet$\q|
|00000060| 75 61 64 7d 0d 5c 64 65 | 66 5c 4c 7b 7b 5c 63 61 |uad}.\de|f\L{{\ca|
|00000070| 6c 20 4c 7d 7d 0d 5c 64 | 65 66 5c 46 7b 5c 72 65 |l L}}.\d|ef\F{\re|
|00000080| 6c 61 78 5c 69 66 6d 6d | 6f 64 65 20 5c 50 68 69 |lax\ifmm|ode \Phi|
|00000090| 20 5c 65 6c 73 65 20 24 | 5c 50 68 69 24 20 5c 66 | \else $|\Phi$ \f|
|000000a0| 69 7d 0d 5c 64 65 66 5c | 47 7b 5c 72 65 6c 61 78 |i}.\def\|G{\relax|
|000000b0| 5c 69 66 6d 6d 6f 64 65 | 20 5c 47 61 6d 6d 61 20 |\ifmmode| \Gamma |
|000000c0| 5c 65 6c 73 65 20 24 5c | 47 61 6d 6d 61 24 20 5c |\else $\|Gamma$ \|
|000000d0| 66 69 7d 0d 5c 64 65 66 | 5c 66 7b 5c 72 65 6c 61 |fi}.\def|\f{\rela|
|000000e0| 78 5c 69 66 6d 6d 6f 64 | 65 20 5c 70 68 69 20 5c |x\ifmmod|e \phi \|
|000000f0| 65 6c 73 65 20 24 5c 70 | 68 69 24 20 5c 66 69 7d |else $\p|hi$ \fi}|
|00000100| 0d 5c 64 65 66 5c 61 6e | 64 7b 5c 68 62 6f 78 7b |.\def\an|d{\hbox{|
|00000110| 5c 72 6d 5c 20 61 6e 64 | 5c 20 7d 7d 0d 5c 64 65 |\rm\ and|\ }}.\de|
|00000120| 66 5c 72 65 66 23 31 7b | 5b 7b 5c 62 66 23 31 7d |f\ref#1{|[{\bf#1}|
|00000130| 5d 7d 0d 0d 5c 68 79 70 | 68 65 6e 61 74 69 6f 6e |]}..\hyp|henation|
|00000140| 7b 70 61 2d 72 61 6d 2d | 65 2d 74 72 69 7a 2d 65 |{pa-ram-|e-triz-e|
|00000150| 64 7d 0d 0d 5c 66 6f 6e | 74 5c 73 75 6d 6d 61 72 |d}..\fon|t\summar|
|00000160| 79 66 6f 6e 74 3d 63 6d | 72 35 20 73 63 61 6c 65 |yfont=cm|r5 scale|
|00000170| 64 20 5c 6d 61 67 73 74 | 65 70 32 0d 0d 5c 6f 75 |d \magst|ep2..\ou|
|00000180| 74 65 72 5c 64 65 66 5c | 62 65 67 69 6e 73 65 63 |ter\def\|beginsec|
|00000190| 74 69 6f 6e 23 31 5c 70 | 61 72 7b 5c 76 73 6b 69 |tion#1\p|ar{\vski|
|000001a0| 70 30 70 74 0d 70 6c 75 | 73 2e 30 38 5c 76 73 69 |p0pt.plu|s.08\vsi|
|000001b0| 7a 65 5c 70 65 6e 61 6c | 74 79 2d 32 35 30 5c 76 |ze\penal|ty-250\v|
|000001c0| 73 6b 69 70 30 70 74 20 | 70 6c 75 73 0d 2d 2e 30 |skip0pt |plus.-.0|
|000001d0| 38 5c 76 73 69 7a 65 5c | 62 69 67 73 6b 69 70 5c |8\vsize\|bigskip\|
|000001e0| 76 73 6b 69 70 5c 70 61 | 72 73 6b 69 70 0d 5c 6d |vskip\pa|rskip.\m|
|000001f0| 65 73 73 61 67 65 7b 23 | 31 7d 5c 6c 65 66 74 6c |essage{#|1}\leftl|
|00000200| 69 6e 65 7b 5c 62 66 23 | 31 7d 5c 6e 6f 62 72 65 |ine{\bf#|1}\nobre|
|00000210| 61 6b 5c 73 6d 61 6c 6c | 73 6b 69 70 7d 0d 0d 5c |ak\small|skip}..\|
|00000220| 64 65 66 5c 6f 70 65 6e | 62 6f 78 23 31 23 32 7b |def\open|box#1#2{|
|00000230| 5c 73 65 74 62 6f 78 34 | 3d 5c 76 62 6f 78 7b 5c |\setbox4|=\vbox{\|
|00000240| 68 73 69 7a 65 20 23 31 | 0d 5c 74 6f 6c 65 72 61 |hsize #1|.\tolera|
|00000250| 6e 63 65 3d 33 30 30 30 | 5c 6e 6f 69 6e 64 65 6e |nce=3000|\noinden|
|00000260| 74 5c 73 74 72 75 74 23 | 32 5c 73 74 72 75 74 7d |t\strut#|2\strut}|
|00000270| 7d 0d 5c 64 65 66 5c 62 | 6f 78 69 74 23 31 23 32 |}.\def\b|oxit#1#2|
|00000280| 7b 5c 6f 70 65 6e 62 6f | 78 7b 23 31 7d 7b 23 32 |{\openbo|x{#1}{#2|
|00000290| 7d 0d 5c 76 62 6f 78 7b | 5c 68 72 75 6c 65 5c 68 |}.\vbox{|\hrule\h|
|000002a0| 62 6f 78 7b 5c 76 72 75 | 6c 65 5c 6b 65 72 6e 33 |box{\vru|le\kern3|
|000002b0| 70 74 0d 5c 76 62 6f 78 | 7b 5c 6b 65 72 6e 33 70 |pt.\vbox|{\kern3p|
|000002c0| 74 5c 62 6f 78 34 5c 6b | 65 72 6e 33 70 74 7d 5c |t\box4\k|ern3pt}\|
|000002d0| 6b 65 72 6e 33 70 74 5c | 76 72 75 6c 65 7d 5c 68 |kern3pt\|vrule}\h|
|000002e0| 72 75 6c 65 7d 7d 0d 0d | 25 20 46 75 6e 63 74 69 |rule}}..|% Functi|
|000002f0| 6f 6e 20 62 6f 78 3a 20 | 69 6e 70 75 74 2c 20 66 |on box: |input, f|
|00000300| 75 6e 63 74 69 6f 6e 2c | 20 6f 75 74 70 75 74 2c |unction,| output,|
|00000310| 20 77 69 64 74 68 0d 5c | 64 65 66 5c 66 62 6f 78 | width.\|def\fbox|
|00000320| 23 31 23 32 23 33 23 34 | 7b 24 0d 5c 76 63 65 6e |#1#2#3#4|{$.\vcen|
|00000330| 74 65 72 7b 5c 6e 6f 69 | 6e 64 65 6e 74 5c 68 73 |ter{\noi|ndent\hs|
|00000340| 69 7a 65 23 34 0d 5c 68 | 66 69 6c 6c 24 23 31 5c |ize#4.\h|fill$#1\|
|00000350| 72 69 67 68 74 61 72 72 | 6f 77 24 7d 5c 76 63 65 |rightarr|ow$}\vce|
|00000360| 6e 74 65 72 7b 5c 68 73 | 69 7a 65 23 34 0d 5c 62 |nter{\hs|ize#4.\b|
|00000370| 6f 78 69 74 7b 23 34 7d | 7b 5c 68 66 69 6c 6c 24 |oxit{#4}|{\hfill$|
|00000380| 23 32 24 5c 68 66 69 6c | 6c 7d 7d 0d 5c 76 63 65 |#2$\hfil|l}}.\vce|
|00000390| 6e 74 65 72 7b 5c 6e 6f | 69 6e 64 65 6e 74 5c 68 |nter{\no|indent\h|
|000003a0| 73 69 7a 65 23 34 24 5c | 72 69 67 68 74 61 72 72 |size#4$\|rightarr|
|000003b0| 6f 77 23 33 24 7d 24 7d | 0d 0d 5c 64 65 66 5c 67 |ow#3$}$}|..\def\g|
|000003c0| 72 61 66 62 6f 78 23 31 | 23 32 7b 5c 76 74 6f 70 |rafbox#1|#2{\vtop|
|000003d0| 20 74 6f 20 32 2e 35 74 | 72 75 65 69 6e 7b 5c 68 | to 2.5t|ruein{\h|
|000003e0| 73 69 7a 65 3d 32 2e 31 | 34 74 72 75 65 69 6e 25 |size=2.1|4truein%|
|000003f0| 0d 5c 76 66 69 6c 6c 5c | 73 70 65 63 69 61 6c 7b |.\vfill\|special{|
|00000400| 70 63 6c 3a 23 31 7d 5c | 68 66 69 6c 6c 5c 73 6d |pcl:#1}\|hfill\sm|
|00000410| 61 6c 6c 73 6b 69 70 25 | 0d 5c 6c 69 6e 65 7b 5c |allskip%|.\line{\|
|00000420| 6e 6f 69 6e 64 65 6e 74 | 5c 68 66 69 6c 23 32 5c |noindent|\hfil#2\|
|00000430| 68 66 69 6c 7d 0d 7d 7d | 0d 0d 5c 64 65 66 5c 32 |hfil}.}}|..\def\2|
|00000440| 6c 69 6e 65 23 31 23 32 | 23 33 23 34 7b 5c 6c 69 |line#1#2|#3#4{\li|
|00000450| 6e 65 7b 5c 6e 6f 69 6e | 64 65 6e 74 5c 68 66 69 |ne{\noin|dent\hfi|
|00000460| 6c 6c 5c 67 72 61 66 62 | 6f 78 7b 23 31 7d 7b 23 |ll\grafb|ox{#1}{#|
|00000470| 32 7d 0d 5c 68 66 69 6c | 6c 5c 67 72 61 66 62 6f |2}.\hfil|l\grafbo|
|00000480| 78 7b 23 33 7d 7b 23 34 | 7d 0d 5c 68 66 69 6c 6c |x{#3}{#4|}.\hfill|
|00000490| 7d 7d 0d 0d 25 20 66 6f | 72 6d 61 74 3a 20 5c 32 |}}..% fo|rmat: \2|
|000004a0| 6c 69 6e 65 7b 66 69 6c | 65 31 7d 7b 74 69 74 6c |line{fil|e1}{titl|
|000004b0| 65 31 7d 7b 66 69 6c 65 | 32 7d 7b 74 69 74 6c 65 |e1}{file|2}{title|
|000004c0| 32 7d 0d 0d 0d 25 20 52 | 45 41 4c 20 4e 2d 53 50 |2}...% R|EAL N-SP|
|000004d0| 41 43 45 3a 20 23 31 20 | 3d 20 44 49 4d 45 4e 53 |ACE: #1 |= DIMENS|
|000004e0| 49 4f 4e 0d 5c 64 65 66 | 5c 72 73 70 61 63 65 23 |ION.\def|\rspace#|
|000004f0| 31 7b 5c 69 66 6d 6d 6f | 64 65 7b 5c 73 6c 20 52 |1{\ifmmo|de{\sl R|
|00000500| 7d 5e 23 31 5c 65 6c 73 | 65 24 7b 5c 73 6c 20 52 |}^#1\els|e${\sl R|
|00000510| 7d 5e 23 31 24 5c 66 69 | 7d 0d 0d 25 20 41 4e 44 |}^#1$\fi|}..% AND|
|00000520| 20 46 4f 52 20 55 53 45 | 20 49 4e 20 4d 41 54 48 | FOR USE| IN MATH|
|00000530| 20 4d 4f 44 45 0d 5c 64 | 65 66 5c 61 6e 64 7b 5c | MODE.\d|ef\and{\|
|00000540| 68 62 6f 78 7b 20 61 6e | 64 20 7d 7d 0d 0d 5c 64 |hbox{ an|d }}..\d|
|00000550| 65 66 5c 62 6f 78 73 74 | 72 75 74 7b 5c 76 72 75 |ef\boxst|rut{\vru|
|00000560| 6c 65 20 68 65 69 67 68 | 74 20 31 35 70 74 20 77 |le heigh|t 15pt w|
|00000570| 69 64 74 68 20 30 70 74 | 20 64 65 70 74 68 20 35 |idth 0pt| depth 5|
|00000580| 70 74 7d 0d 0d 5c 63 65 | 6e 74 65 72 6c 69 6e 65 |pt}..\ce|nterline|
|00000590| 7b 5c 62 66 20 44 79 6e | 61 6d 69 63 20 46 75 6e |{\bf Dyn|amic Fun|
|000005a0| 63 74 69 6f 6e 20 56 69 | 73 75 61 6c 69 7a 61 74 |ction Vi|sualizat|
|000005b0| 69 6f 6e 7d 0d 5c 62 69 | 67 73 6b 69 70 0d 0d 5c |ion}.\bi|gskip..\|
|000005c0| 63 65 6e 74 65 72 6c 69 | 6e 65 7b 5c 62 66 20 41 |centerli|ne{\bf A|
|000005d0| 62 73 74 72 61 63 74 7d | 0d 0d 7b 5c 6e 61 72 72 |bstract}|..{\narr|
|000005e0| 6f 77 65 72 5c 73 75 6d | 6d 61 72 79 66 6f 6e 74 |ower\sum|maryfont|
|000005f0| 5c 61 64 76 61 6e 63 65 | 5c 62 61 73 65 6c 69 6e |\advance|\baselin|
|00000600| 65 73 6b 69 70 20 62 79 | 20 2d 32 70 74 0d 5c 74 |eskip by| -2pt.\t|
|00000610| 6f 6c 65 72 61 6e 63 65 | 3d 31 30 30 30 0d 54 68 |olerance|=1000.Th|
|00000620| 65 20 67 72 61 70 68 20 | 6f 66 20 61 20 66 75 6e |e graph |of a fun|
|00000630| 63 74 69 6f 6e 20 70 72 | 6f 76 69 64 65 73 20 61 |ction pr|ovides a|
|00000640| 20 75 73 65 66 75 6c 20 | 62 75 74 20 69 6e 63 6f | useful |but inco|
|00000650| 6d 70 6c 65 74 65 20 6d | 65 61 6e 73 0d 66 6f 72 |mplete m|eans.for|
|00000660| 20 76 69 73 75 61 6c 69 | 7a 61 74 69 6f 6e 2e 20 | visuali|zation. |
|00000670| 4e 65 77 6c 79 20 64 65 | 76 65 6c 6f 70 65 64 20 |Newly de|veloped |
|00000680| 73 6f 66 74 77 61 72 65 | 20 77 68 69 63 68 20 63 |software| which c|
|00000690| 6f 6e 6e 65 63 74 73 0d | 70 6f 69 6e 74 73 20 6f |onnects.|points o|
|000006a0| 6e 20 61 20 64 6f 6d 61 | 69 6e 20 6c 69 6e 65 20 |n a doma|in line |
|000006b0| 77 69 74 68 20 74 68 65 | 69 72 20 66 75 6e 63 74 |with the|ir funct|
|000006c0| 69 6f 6e 20 69 6d 61 67 | 65 73 20 6f 6e 20 61 0d |ion imag|es on a.|
|000006d0| 70 61 72 61 6c 6c 65 6c | 20 72 61 6e 67 65 20 6c |parallel| range l|
|000006e0| 69 6e 65 20 63 61 6e 20 | 68 65 6c 70 20 74 6f 20 |ine can |help to |
|000006f0| 70 72 65 73 65 6e 74 20 | 61 20 66 75 6e 63 74 69 |present |a functi|
|00000700| 6f 6e 20 61 73 20 61 0d | 6d 61 70 70 69 6e 67 20 |on as a.|mapping |
|00000710| 6f 66 20 70 6f 69 6e 74 | 73 2e 20 46 75 72 74 68 |of point|s. Furth|
|00000720| 65 72 6d 6f 72 65 2c 20 | 74 68 65 20 70 61 74 68 |ermore, |the path|
|00000730| 73 20 6f 66 0d 70 6f 69 | 6e 74 73 20 74 6f 77 61 |s of.poi|nts towa|
|00000740| 72 64 20 74 68 65 69 72 | 20 69 6d 61 67 65 73 20 |rd their| images |
|00000750| 63 61 6e 20 62 65 20 61 | 6e 69 6d 61 74 65 64 20 |can be a|nimated |
|00000760| 69 6e 20 73 75 63 68 20 | 61 20 77 61 79 0d 74 68 |in such |a way.th|
|00000770| 61 74 20 73 70 65 65 64 | 73 20 61 72 65 20 70 72 |at speed|s are pr|
|00000780| 6f 70 6f 72 74 69 6f 6e | 61 6c 20 74 6f 20 74 68 |oportion|al to th|
|00000790| 65 20 64 65 72 69 76 61 | 74 69 76 65 73 20 61 74 |e deriva|tives at|
|000007a0| 20 74 68 65 0d 69 6e 64 | 69 76 69 64 75 61 6c 20 | the.ind|ividual |
|000007b0| 70 6f 69 6e 74 73 2e 20 | 54 68 65 20 72 65 73 75 |points. |The resu|
|000007c0| 6c 74 69 6e 67 20 6d 6f | 76 65 6d 65 6e 74 20 6f |lting mo|vement o|
|000007d0| 66 20 61 6e 20 69 6e 74 | 65 72 76 61 6c 20 6f 66 |f an int|erval of|
|000007e0| 0d 70 6f 69 6e 74 73 20 | 70 72 6f 64 75 63 65 73 |.points |produces|
|000007f0| 20 6d 6f 76 69 6e 67 20 | 63 75 72 76 65 73 20 77 | moving |curves w|
|00000800| 68 6f 73 65 20 67 65 6f | 6d 65 74 72 69 63 20 70 |hose geo|metric p|
|00000810| 72 6f 70 65 72 74 69 65 | 73 0d 72 65 66 6c 65 63 |ropertie|s.reflec|
|00000820| 74 20 70 72 6f 70 65 72 | 74 69 65 73 20 6f 66 20 |t proper|ties of |
|00000830| 74 68 65 20 66 75 6e 63 | 74 69 6f 6e 20 61 6e 64 |the func|tion and|
|00000840| 20 69 74 73 20 64 65 72 | 69 76 61 74 69 76 65 73 | its der|ivatives|
|00000850| 2e 20 54 68 65 73 65 0d | 69 6d 61 67 65 73 20 73 |. These.|images s|
|00000860| 75 67 67 65 73 74 20 6e | 65 77 20 74 79 70 65 73 |uggest n|ew types|
|00000870| 20 6f 66 20 72 65 73 75 | 6c 74 73 2c 20 73 6f 6d | of resu|lts, som|
|00000880| 65 20 6f 66 20 77 68 69 | 63 68 20 61 72 65 20 73 |e of whi|ch are s|
|00000890| 74 61 74 65 64 0d 61 6e | 64 20 70 72 6f 76 65 64 |tated.an|d proved|
|000008a0| 2e 5c 70 61 72 7d 0d 5c | 62 69 67 73 6b 69 70 0d |.\par}.\|bigskip.|
|000008b0| 0d 25 5c 68 65 61 64 7b | 49 6e 74 72 6f 64 75 63 |.%\head{|Introduc|
|000008c0| 74 69 6f 6e 7d 0d 5c 62 | 65 67 69 6e 73 65 63 74 |tion}.\b|eginsect|
|000008d0| 69 6f 6e 7b 49 6e 74 72 | 6f 64 75 63 74 69 6f 6e |ion{Intr|oduction|
|000008e0| 7d 0d 0d 54 68 65 20 70 | 72 6f 62 6c 65 6d 20 66 |}..The p|roblem f|
|000008f0| 69 72 73 74 20 61 70 70 | 65 61 72 73 20 69 6e 20 |irst app|ears in |
|00000900| 32 6e 64 2d 79 65 61 72 | 20 43 61 6c 63 75 6c 75 |2nd-year| Calculu|
|00000910| 73 2e 20 41 73 20 73 6f | 6f 6e 20 61 73 20 74 68 |s. As so|on as th|
|00000920| 65 0d 64 69 73 63 75 73 | 73 69 6f 6e 20 6d 6f 76 |e.discus|sion mov|
|00000930| 65 73 20 74 6f 20 66 75 | 6e 63 74 69 6f 6e 73 20 |es to fu|nctions |
|00000940| 24 5c 72 73 70 61 63 65 | 31 5c 72 69 67 68 74 61 |$\rspace|1\righta|
|00000950| 72 72 6f 77 5c 72 73 70 | 61 63 65 33 24 0d 61 6e |rrow\rsp|ace3$.an|
|00000960| 64 20 24 5c 72 73 70 61 | 63 65 32 5c 72 69 67 68 |d $\rspa|ce2\righ|
|00000970| 74 61 72 72 6f 77 5c 72 | 73 70 61 63 65 33 24 20 |tarrow\r|space3$ |
|00000980| 61 20 73 6c 69 67 68 74 | 6c 79 20 70 75 7a 7a 6c |a slight|ly puzzl|
|00000990| 65 64 20 6c 6f 6f 6b 0d | 63 6f 6d 65 73 20 6f 76 |ed look.|comes ov|
|000009a0| 65 72 20 74 68 65 20 66 | 61 63 65 73 20 6f 66 20 |er the f|aces of |
|000009b0| 6d 61 6e 79 20 73 74 75 | 64 65 6e 74 73 2e 20 54 |many stu|dents. T|
|000009c0| 68 69 73 20 67 65 74 73 | 20 77 6f 72 73 65 20 77 |his gets| worse w|
|000009d0| 68 65 6e 0d 49 20 72 65 | 66 65 72 20 74 6f 20 74 |hen.I re|fer to t|
|000009e0| 68 65 20 60 60 69 6d 61 | 67 65 27 27 20 6f 66 20 |he ``ima|ge'' of |
|000009f0| 73 75 63 68 20 61 20 66 | 75 6e 63 74 69 6f 6e 20 |such a f|unction |
|00000a00| 61 6e 64 20 74 72 79 20 | 74 6f 20 64 72 61 77 20 |and try |to draw |
|00000a10| 69 74 0d 6f 6e 20 74 68 | 65 20 62 6f 61 72 64 2e |it.on th|e board.|
|00000a20| 20 49 20 63 61 6e 20 73 | 65 65 20 74 68 61 74 20 | I can s|ee that |
|00000a30| 61 6c 6c 20 69 73 20 6e | 6f 74 20 77 65 6c 6c 2e |all is n|ot well.|
|00000a40| 20 46 69 6e 61 6c 6c 79 | 2c 20 61 0d 73 74 75 64 | Finally|, a.stud|
|00000a50| 65 6e 74 20 6d 61 79 20 | 61 73 6b 3a 20 60 60 49 |ent may |ask: ``I|
|00000a60| 73 20 74 68 69 73 20 28 | 6c 69 6b 65 29 20 74 68 |s this (|like) th|
|00000a70| 65 20 67 72 61 70 68 3f | 27 27 20 4f 6e 63 65 20 |e graph?|'' Once |
|00000a80| 61 67 61 69 6e 20 69 74 | 0d 62 65 63 6f 6d 65 73 |again it|.becomes|
|00000a90| 20 63 6c 65 61 72 20 74 | 68 61 74 20 6d 6f 73 74 | clear t|hat most|
|00000aa0| 20 73 74 75 64 65 6e 74 | 73 20 64 6f 6e 27 74 20 | student|s don't |
|00000ab0| 6b 6e 6f 77 20 74 68 65 | 20 64 69 66 66 65 72 65 |know the| differe|
|00000ac0| 6e 63 65 0d 62 65 74 77 | 65 65 6e 20 61 20 66 75 |nce.betw|een a fu|
|00000ad0| 6e 63 74 69 6f 6e 20 61 | 6e 64 20 69 74 73 20 67 |nction a|nd its g|
|00000ae0| 72 61 70 68 2c 20 6f 72 | 20 62 65 74 77 65 65 6e |raph, or| between|
|00000af0| 20 74 68 65 20 67 72 61 | 70 68 20 61 6e 64 20 74 | the gra|ph and t|
|00000b00| 68 65 0d 69 6d 61 67 65 | 20 6f 66 20 61 20 66 75 |he.image| of a fu|
|00000b10| 6e 63 74 69 6f 6e 2e 0d | 0d 41 73 20 49 20 64 69 |nction..|.As I di|
|00000b20| 73 63 6f 76 65 72 65 64 | 20 73 6f 6d 65 20 74 69 |scovered| some ti|
|00000b30| 6d 65 20 61 67 6f 2c 20 | 74 68 65 20 70 72 6f 62 |me ago, |the prob|
|00000b40| 6c 65 6d 20 69 73 20 6e | 6f 74 20 73 69 6d 70 6c |lem is n|ot simpl|
|00000b50| 79 20 74 68 61 74 0d 73 | 74 75 64 65 6e 74 73 20 |y that.s|tudents |
|00000b60| 68 61 76 65 20 6e 65 76 | 65 72 20 73 65 65 6e 20 |have nev|er seen |
|00000b70| 74 68 65 73 65 20 64 69 | 73 74 69 6e 63 74 69 6f |these di|stinctio|
|00000b80| 6e 73 20 6d 61 64 65 2c | 20 74 68 6f 75 67 68 20 |ns made,| though |
|00000b90| 66 6f 72 0d 6d 61 6e 79 | 20 74 68 69 73 20 69 73 |for.many| this is|
|00000ba0| 20 74 68 65 20 63 61 73 | 65 2e 20 45 76 65 6e 20 | the cas|e. Even |
|00000bb0| 61 66 74 65 72 20 65 78 | 61 6d 70 6c 65 73 20 61 |after ex|amples a|
|00000bc0| 72 65 20 67 69 76 65 6e | 20 61 6e 64 0d 64 65 66 |re given| and.def|
|00000bd0| 69 6e 69 74 69 6f 6e 73 | 20 70 72 65 73 65 6e 74 |initions| present|
|00000be0| 65 64 2c 20 74 68 65 20 | 63 6f 6e 66 75 73 69 6f |ed, the |confusio|
|00000bf0| 6e 20 70 65 72 73 69 73 | 74 73 2c 20 73 6f 6d 65 |n persis|ts, some|
|00000c00| 74 69 6d 65 73 0d 74 68 | 72 6f 75 67 68 20 74 68 |times.th|rough th|
|00000c10| 65 20 65 6e 74 69 72 65 | 20 63 6f 75 72 73 65 2e |e entire| course.|
|00000c20| 20 41 73 20 49 20 68 61 | 76 65 20 63 6f 6d 65 20 | As I ha|ve come |
|00000c30| 74 6f 20 75 6e 64 65 72 | 73 74 61 6e 64 2c 20 74 |to under|stand, t|
|00000c40| 68 65 0d 70 72 6f 62 6c | 65 6d 20 72 65 73 75 6c |he.probl|em resul|
|00000c50| 74 73 20 66 72 6f 6d 20 | 61 20 63 6f 6e 66 75 73 |ts from |a confus|
|00000c60| 65 64 20 6f 72 20 69 6d | 70 65 72 66 65 63 74 20 |ed or im|perfect |
|00000c70| 63 6f 6e 63 65 70 74 69 | 6f 6e 20 6f 66 0d 7b 5c |concepti|on of.{\|
|00000c80| 69 74 20 66 75 6e 63 74 | 69 6f 6e 7d 2e 20 54 68 |it funct|ion}. Th|
|00000c90| 69 73 20 68 61 73 2c 20 | 6f 66 20 63 6f 75 72 73 |is has, |of cours|
|00000ca0| 65 2c 20 62 65 65 6e 20 | 72 65 63 6f 67 6e 69 7a |e, been |recogniz|
|00000cb0| 65 64 20 62 79 0d 6f 74 | 68 65 72 73 2c 20 61 6e |ed by.ot|hers, an|
|00000cc0| 64 20 73 74 75 64 69 65 | 64 20 66 61 69 72 6c 79 |d studie|d fairly|
|00000cd0| 20 65 78 74 65 6e 73 69 | 76 65 6c 79 20 28 73 65 | extensi|vely (se|
|00000ce0| 65 20 44 75 62 69 6e 73 | 6b 79 20 5c 72 65 66 7b |e Dubins|ky \ref{|
|00000cf0| 35 7d 2c 0d 66 6f 72 20 | 65 78 61 6d 70 6c 65 29 |5},.for |example)|
|00000d00| 2e 20 4d 6f 72 65 20 70 | 72 65 63 69 73 65 6c 79 |. More p|recisely|
|00000d10| 2c 20 68 6f 77 65 76 65 | 72 2c 20 49 20 62 65 6c |, howeve|r, I bel|
|00000d20| 69 65 76 65 20 74 68 61 | 74 20 74 68 65 0d 64 69 |ieve tha|t the.di|
|00000d30| 66 66 69 63 75 6c 74 79 | 20 6d 79 20 73 74 75 64 |fficulty| my stud|
|00000d40| 65 6e 74 73 20 68 61 76 | 65 20 72 65 73 75 6c 74 |ents hav|e result|
|00000d50| 73 20 66 72 6f 6d 20 74 | 68 65 69 72 20 69 64 65 |s from t|heir ide|
|00000d60| 6e 74 69 66 69 63 61 74 | 69 6f 6e 0d 6f 66 20 61 |ntificat|ion.of a|
|00000d70| 20 66 75 6e 63 74 69 6f | 6e 20 77 69 74 68 20 69 | functio|n with i|
|00000d80| 74 73 20 67 72 61 70 68 | 2e 0d 0d 49 6e 20 74 68 |ts graph|...In th|
|00000d90| 69 73 20 61 72 74 69 63 | 6c 65 20 49 20 77 69 6c |is artic|le I wil|
|00000da0| 6c 20 65 78 61 6d 69 6e | 65 20 73 6f 6d 65 20 6f |l examin|e some o|
|00000db0| 66 20 74 68 65 20 68 69 | 73 74 6f 72 79 20 6f 66 |f the hi|story of|
|00000dc0| 20 74 68 69 73 0d 69 64 | 65 6e 74 69 66 69 63 61 | this.id|entifica|
|00000dd0| 74 69 6f 6e 2c 20 77 68 | 69 63 68 20 49 20 63 61 |tion, wh|ich I ca|
|00000de0| 6c 6c 20 74 68 65 20 7b | 5c 69 74 20 53 74 61 74 |ll the {|\it Stat|
|00000df0| 69 63 7d 20 63 6f 6e 63 | 65 70 74 20 6f 66 20 61 |ic} conc|ept of a|
|00000e00| 0d 66 75 6e 63 74 69 6f | 6e 2c 20 61 6e 64 20 73 |.functio|n, and s|
|00000e10| 75 67 67 65 73 74 20 61 | 20 77 61 79 20 69 6e 20 |uggest a| way in |
|00000e20| 77 68 69 63 68 20 61 20 | 63 6f 6d 70 6c 65 6d 65 |which a |compleme|
|00000e30| 6e 74 61 72 79 20 76 69 | 65 77 2c 20 74 68 65 0d |ntary vi|ew, the.|
|00000e40| 7b 5c 69 74 20 44 79 6e | 61 6d 69 63 7d 20 76 69 |{\it Dyn|amic} vi|
|00000e50| 65 77 2c 20 63 61 6e 20 | 62 65 20 66 6f 73 74 65 |ew, can |be foste|
|00000e60| 72 65 64 2e 0d 5c 6d 65 | 64 73 6b 69 70 0d 0d 25 |red..\me|dskip..%|
|00000e70| 5c 68 65 61 64 7b 46 75 | 6e 63 74 69 6f 6e 73 20 |\head{Fu|nctions |
|00000e80| 61 73 20 4f 72 64 65 72 | 65 64 20 50 61 69 72 73 |as Order|ed Pairs|
|00000e90| 7d 0d 0d 5c 62 65 67 69 | 6e 73 65 63 74 69 6f 6e |}..\begi|nsection|
|00000ea0| 7b 46 75 6e 63 74 69 6f | 6e 73 20 61 73 20 4f 72 |{Functio|ns as Or|
|00000eb0| 64 65 72 65 64 20 50 61 | 69 72 73 7d 0d 0d 4e 6f |dered Pa|irs}..No|
|00000ec0| 74 20 73 6f 20 6c 6f 6e | 67 20 61 67 6f 20 69 74 |t so lon|g ago it|
|00000ed0| 20 77 61 73 20 66 61 73 | 68 69 6f 6e 61 62 6c 65 | was fas|hionable|
|00000ee0| 20 74 6f 20 64 65 66 69 | 6e 65 20 61 20 66 75 6e | to defi|ne a fun|
|00000ef0| 63 74 69 6f 6e 20 61 73 | 20 61 0d 73 65 74 20 6f |ction as| a.set o|
|00000f00| 66 20 6f 72 64 65 72 65 | 64 20 70 61 69 72 73 20 |f ordere|d pairs |
|00000f10| 68 61 76 69 6e 67 20 74 | 68 65 20 70 72 6f 70 65 |having t|he prope|
|00000f20| 72 74 79 20 74 68 61 74 | 20 64 69 73 74 69 6e 63 |rty that| distinc|
|00000f30| 74 20 70 61 69 72 73 0d | 68 61 76 65 20 64 69 73 |t pairs.|have dis|
|00000f40| 74 69 6e 63 74 20 66 69 | 72 73 74 20 65 6c 65 6d |tinct fi|rst elem|
|00000f50| 65 6e 74 73 2e 20 54 68 | 69 73 20 64 65 66 69 6e |ents. Th|is defin|
|00000f60| 69 74 69 6f 6e 20 77 61 | 73 20 69 6e 73 70 69 72 |ition wa|s inspir|
|00000f70| 65 64 20 62 79 0d 50 65 | 61 6e 6f 20 28 5c 72 65 |ed by.Pe|ano (\re|
|00000f80| 66 7b 39 7d 29 20 28 73 | 65 65 20 61 6c 73 6f 20 |f{9}) (s|ee also |
|00000f90| 5c 72 65 66 7b 31 30 7d | 29 2e 20 57 68 65 6e 20 |\ref{10}|). When |
|00000fa0| 57 69 65 6e 65 72 20 28 | 5c 72 65 66 7b 31 32 7d |Wiener (|\ref{12}|
|00000fb0| 29 0d 73 68 6f 77 65 64 | 20 68 6f 77 20 74 6f 20 |).showed| how to |
|00000fc0| 64 65 66 69 6e 65 20 6f | 72 64 65 72 65 64 20 70 |define o|rdered p|
|00000fd0| 61 69 72 73 20 61 73 20 | 73 65 74 73 2c 20 6e 61 |airs as |sets, na|
|00000fe0| 6d 65 6c 79 3a 20 24 28 | 61 2c 62 29 0d 3d 5c 62 |mely: $(|a,b).=\b|
|00000ff0| 69 67 6c 5c 7b 5c 7b 61 | 5c 7d 2c 20 5c 7b 61 2c |igl\{\{a|\}, \{a,|
|00001000| 62 5c 7d 5c 62 69 67 72 | 5c 7d 24 2c 20 74 68 69 |b\}\bigr|\}$, thi|
|00001010| 73 20 6e 6f 74 69 6f 6e | 20 62 65 63 61 6d 65 20 |s notion| became |
|00001020| 70 61 72 74 20 6f 66 20 | 74 68 65 0d 70 72 6f 67 |part of |the.prog|
|00001030| 72 61 6d 20 74 6f 20 72 | 65 64 75 63 65 20 6d 61 |ram to r|educe ma|
|00001040| 74 68 65 6d 61 74 69 63 | 73 20 74 6f 20 73 65 74 |thematic|s to set|
|00001050| 20 74 68 65 6f 72 79 20 | 61 6e 64 2c 20 65 76 65 | theory |and, eve|
|00001060| 6e 74 75 61 6c 6c 79 2c | 0d 74 6f 20 6c 6f 67 69 |ntually,|.to logi|
|00001070| 63 2e 20 54 68 65 20 66 | 6f 72 6d 61 6c 20 61 70 |c. The f|ormal ap|
|00001080| 70 65 61 6c 20 6f 66 20 | 74 68 69 73 20 70 72 6f |peal of |this pro|
|00001090| 67 72 61 6d 20 70 72 6f | 62 61 62 6c 79 20 72 65 |gram pro|bably re|
|000010a0| 61 63 68 65 64 0d 69 74 | 73 20 68 69 67 68 2d 70 |ached.it|s high-p|
|000010b0| 6f 69 6e 74 20 77 69 74 | 68 20 74 68 65 20 69 6e |oint wit|h the in|
|000010c0| 66 6c 75 65 6e 74 69 61 | 6c 20 76 6f 6c 75 6d 65 |fluentia|l volume|
|000010d0| 73 20 6f 66 20 42 6f 75 | 72 62 61 6b 69 0d 28 5c |s of Bou|rbaki.(\|
|000010e0| 72 65 66 7b 31 7d 29 2c | 20 61 6e 64 20 77 61 73 |ref{1}),| and was|
|000010f0| 20 6c 6f 6f 73 65 64 20 | 6f 6e 20 74 68 65 20 6d | loosed |on the m|
|00001100| 61 74 68 65 6d 61 74 69 | 63 73 20 65 64 75 63 61 |athemati|cs educa|
|00001110| 74 69 6f 6e 0d 77 6f 72 | 6c 64 20 62 79 20 74 68 |tion.wor|ld by th|
|00001120| 65 20 60 60 4e 65 77 20 | 4d 61 74 68 27 27 20 69 |e ``New |Math'' i|
|00001130| 6e 20 74 68 65 20 31 39 | 36 30 27 73 2e 0d 0d 49 |n the 19|60's...I|
|00001140| 6e 20 68 69 73 20 69 6e | 66 6c 75 65 6e 74 69 61 |n his in|fluentia|
|00001150| 6c 20 61 6e 64 20 63 6c | 61 73 73 69 63 20 74 65 |l and cl|assic te|
|00001160| 78 74 20 7b 5c 62 66 20 | 47 65 6e 65 72 61 6c 20 |xt {\bf |General |
|00001170| 54 6f 70 6f 6c 6f 67 79 | 7d 0d 28 5c 72 65 66 7b |Topology|}.(\ref{|
|00001180| 38 7d 29 2c 20 4a 6f 68 | 6e 20 4b 65 6c 6c 65 79 |8}), Joh|n Kelley|
|00001190| 20 77 72 69 74 65 73 3a | 20 60 60 4d 6f 72 65 6f | writes:| ``Moreo|
|000011a0| 76 65 72 2c 20 74 68 65 | 72 65 20 69 73 20 6e 6f |ver, the|re is no|
|000011b0| 0d 69 6e 66 6f 72 6d 61 | 74 69 6f 6e 20 61 62 6f |.informa|tion abo|
|000011c0| 75 74 20 74 68 65 20 66 | 75 6e 63 74 69 6f 6e 20 |ut the f|unction |
|000011d0| 77 68 69 63 68 20 63 61 | 6e 6e 6f 74 20 62 65 20 |which ca|nnot be |
|000011e0| 64 65 72 69 76 65 64 20 | 66 72 6f 6d 0d 69 74 73 |derived |from.its|
|000011f0| 20 67 72 61 70 68 2e 20 | 49 6e 20 62 72 69 65 66 | graph. |In brief|
|00001200| 2c 20 74 68 65 72 65 20 | 69 73 20 6e 6f 20 72 65 |, there |is no re|
|00001210| 61 73 6f 6e 20 77 68 79 | 20 77 65 20 73 68 6f 75 |ason why| we shou|
|00001220| 6c 64 20 61 74 74 65 6d | 70 74 0d 74 6f 20 64 69 |ld attem|pt.to di|
|00001230| 73 74 69 6e 67 75 69 73 | 68 20 62 65 74 77 65 65 |stinguis|h betwee|
|00001240| 6e 20 61 20 66 75 6e 63 | 74 69 6f 6e 20 61 6e 64 |n a func|tion and|
|00001250| 20 69 74 73 20 67 72 61 | 70 68 2e 27 27 20 49 6e | its gra|ph.'' In|
|00001260| 64 65 65 64 2c 20 74 68 | 65 0d 42 6f 75 72 62 61 |deed, th|e.Bourba|
|00001270| 6b 69 20 64 65 66 69 6e | 69 74 69 6f 6e 20 6d 61 |ki defin|ition ma|
|00001280| 6b 65 73 20 61 20 66 75 | 6e 63 74 69 6f 6e 20 69 |kes a fu|nction i|
|00001290| 64 65 6e 74 69 63 61 6c | 20 74 6f 20 69 74 73 20 |dentical| to its |
|000012a0| 67 72 61 70 68 2e 0d 0d | 53 6f 6d 65 74 69 6d 65 |graph...|Sometime|
|000012b0| 2c 20 61 20 64 65 63 61 | 64 65 20 6f 72 20 73 6f |, a deca|de or so|
|000012c0| 20 61 67 6f 2c 20 74 68 | 69 73 20 61 70 70 72 6f | ago, th|is appro|
|000012d0| 61 63 68 20 66 65 6c 6c | 20 6f 75 74 20 6f 66 20 |ach fell| out of |
|000012e0| 66 61 76 6f 72 0d 69 6e | 20 6d 6f 73 74 20 63 61 |favor.in| most ca|
|000012f0| 6c 63 75 6c 75 73 20 61 | 6e 64 20 70 72 65 63 61 |lculus a|nd preca|
|00001300| 6c 63 75 6c 75 73 20 63 | 6f 75 72 73 65 73 2e 20 |lculus c|ourses. |
|00001310| 28 54 68 6f 75 67 68 20 | 6e 6f 74 0d 65 6e 74 69 |(Though |not.enti|
|00001320| 72 65 6c 79 3a 20 6d 79 | 20 64 61 75 67 68 74 65 |rely: my| daughte|
|00001330| 72 20 6c 65 61 72 6e 65 | 64 20 69 74 20 72 65 63 |r learne|d it rec|
|00001340| 65 6e 74 6c 79 20 69 6e | 20 61 20 60 60 72 69 67 |ently in| a ``rig|
|00001350| 6f 72 6f 75 73 27 27 0d | 68 69 67 68 20 73 63 68 |orous''.|high sch|
|00001360| 6f 6f 6c 20 63 6f 75 72 | 73 65 2e 29 20 4e 65 76 |ool cour|se.) Nev|
|00001370| 65 72 74 68 65 6c 65 73 | 73 2c 20 69 74 73 20 69 |ertheles|s, its i|
|00001380| 6e 66 6c 75 65 6e 63 65 | 20 69 73 20 73 74 69 6c |nfluence| is stil|
|00001390| 6c 20 76 65 72 79 0d 73 | 74 72 6f 6e 67 6c 79 20 |l very.s|trongly |
|000013a0| 66 65 6c 74 20 69 6e 20 | 73 65 76 65 72 61 6c 20 |felt in |several |
|000013b0| 77 61 79 73 2e 20 4d 61 | 6e 79 20 6f 66 20 75 73 |ways. Ma|ny of us|
|000013c0| 20 77 68 6f 20 74 65 61 | 63 68 0d 6d 61 74 68 65 | who tea|ch.mathe|
|000013d0| 6d 61 74 69 63 73 20 74 | 68 69 6e 6b 20 6f 66 20 |matics t|hink of |
|000013e0| 66 75 6e 63 74 69 6f 6e | 73 20 69 6e 20 74 68 69 |function|s in thi|
|000013f0| 73 20 77 61 79 20 62 65 | 63 61 75 73 65 20 77 65 |s way be|cause we|
|00001400| 20 77 65 72 65 0d 74 61 | 75 67 68 74 20 74 68 61 | were.ta|ught tha|
|00001410| 74 20 69 74 20 69 73 20 | 74 68 65 20 6f 6e 6c 79 |t it is |the only|
|00001420| 20 60 60 63 6f 72 72 65 | 63 74 27 27 20 66 6f 72 | ``corre|ct'' for|
|00001430| 6d 61 6c 20 64 65 66 69 | 6e 69 74 69 6f 6e 20 6f |mal defi|nition o|
|00001440| 66 0d 66 75 6e 63 74 69 | 6f 6e 2e 20 53 6f 6d 65 |f.functi|on. Some|
|00001450| 20 72 65 73 65 61 72 63 | 68 65 72 73 20 69 6e 74 | researc|hers int|
|00001460| 6f 20 74 68 65 20 6c 65 | 61 72 6e 69 6e 67 20 6f |o the le|arning o|
|00001470| 66 20 6d 61 74 68 65 6d | 61 74 69 63 73 0d 68 61 |f mathem|atics.ha|
|00001480| 76 65 20 73 75 67 67 65 | 73 74 65 64 20 74 68 61 |ve sugge|sted tha|
|00001490| 74 20 74 68 69 73 20 6c | 65 76 65 6c 20 6f 66 20 |t this l|evel of |
|000014a0| 75 6e 64 65 72 73 74 61 | 6e 64 69 6e 67 20 28 69 |understa|nding (i|
|000014b0| 6d 70 6c 69 63 69 74 6c | 79 0d 74 68 65 20 68 69 |mplicitl|y.the hi|
|000014c0| 67 68 65 73 74 20 6c 65 | 76 65 6c 29 20 69 73 20 |ghest le|vel) is |
|000014d0| 69 6d 70 6f 72 74 61 6e | 74 20 69 6e 20 6f 72 64 |importan|t in ord|
|000014e0| 65 72 20 74 6f 20 61 63 | 68 69 65 76 65 0d 60 60 |er to ac|hieve.``|
|000014f0| 65 6e 63 61 70 73 75 6c | 61 74 69 6f 6e 27 27 3a |encapsul|ation'':|
|00001500| 20 74 68 65 20 63 6f 6e | 63 65 70 74 20 6f 66 20 | the con|cept of |
|00001510| 61 20 66 75 6e 63 74 69 | 6f 6e 20 61 73 20 61 20 |a functi|on as a |
|00001520| 7b 5c 69 74 20 74 68 69 | 6e 67 7d 0d 6f 72 20 6f |{\it thi|ng}.or o|
|00001530| 62 6a 65 63 74 20 69 6e | 20 69 74 73 65 6c 66 2e |bject in| itself.|
|00001540| 20 45 6e 63 61 70 73 75 | 6c 61 74 69 6f 6e 20 65 | Encapsu|lation e|
|00001550| 6e 61 62 6c 65 73 20 6f | 6e 65 20 74 6f 20 63 6f |nables o|ne to co|
|00001560| 6e 63 65 69 76 65 20 6f | 66 0d 73 70 61 63 65 73 |nceive o|f.spaces|
|00001570| 20 6f 66 20 66 75 6e 63 | 74 69 6f 6e 73 20 61 6e | of func|tions an|
|00001580| 64 2c 20 66 6f 72 20 65 | 78 61 6d 70 6c 65 2c 20 |d, for e|xample, |
|00001590| 64 69 66 66 65 72 65 6e | 74 69 61 74 69 6f 6e 20 |differen|tiation |
|000015a0| 61 73 20 61 0d 66 75 6e | 63 74 69 6f 6e 20 6f 6e |as a.fun|ction on|
|000015b0| 20 66 75 6e 63 74 69 6f | 6e 73 20 28 73 65 65 20 | functio|ns (see |
|000015c0| 5c 72 65 66 7b 35 7d 29 | 2e 0d 0d 54 68 65 20 6f |\ref{5})|...The o|
|000015d0| 72 64 65 72 65 64 20 70 | 61 69 72 20 64 65 66 69 |rdered p|air defi|
|000015e0| 6e 69 74 69 6f 6e 20 6f | 66 20 66 75 6e 63 74 69 |nition o|f functi|
|000015f0| 6f 6e 20 68 61 73 20 62 | 65 65 6e 20 61 74 20 6c |on has b|een at l|
|00001600| 65 61 73 74 0d 70 61 72 | 74 69 61 6c 6c 79 20 73 |east.par|tially s|
|00001610| 75 70 70 6c 61 6e 74 65 | 64 20 62 79 20 73 6f 6d |upplante|d by som|
|00001620| 65 20 66 6f 72 6d 20 6f | 66 20 74 68 65 20 7b 5c |e form o|f the {\|
|00001630| 69 74 20 70 72 6f 63 65 | 73 73 7d 0d 64 65 66 69 |it proce|ss}.defi|
|00001640| 6e 69 74 69 6f 6e 3a 20 | 41 20 66 75 6e 63 74 69 |nition: |A functi|
|00001650| 6f 6e 20 24 66 24 20 69 | 73 20 61 20 72 75 6c 65 |on $f$ i|s a rule|
|00001660| 20 6f 72 20 70 72 6f 63 | 65 73 73 20 77 68 69 63 | or proc|ess whic|
|00001670| 68 0d 61 73 73 6f 63 69 | 61 74 65 73 20 77 69 74 |h.associ|ates wit|
|00001680| 68 20 65 61 63 68 20 28 | 61 6c 6c 6f 77 61 62 6c |h each (|allowabl|
|00001690| 65 29 20 65 6c 65 6d 65 | 6e 74 20 24 61 24 20 20 |e) eleme|nt $a$ |
|000016a0| 61 20 77 65 6c 6c 2d 64 | 65 66 69 6e 65 64 0d 65 |a well-d|efined.e|
|000016b0| 6c 65 6d 65 6e 74 20 24 | 66 28 61 29 24 2e 20 54 |lement $|f(a)$. T|
|000016c0| 68 69 73 20 70 68 72 61 | 73 65 6f 6c 6f 67 79 2c |his phra|seology,|
|000016d0| 20 77 68 69 63 68 20 61 | 70 70 65 61 72 73 20 69 | which a|ppears i|
|000016e0| 6e 20 6d 6f 73 74 0d 63 | 6f 6e 74 65 6d 70 6f 72 |n most.c|ontempor|
|000016f0| 61 72 79 20 63 61 6c 63 | 75 6c 75 73 20 62 6f 6f |ary calc|ulus boo|
|00001700| 6b 73 2c 20 64 61 74 65 | 73 20 62 61 63 6b 20 61 |ks, date|s back a|
|00001710| 74 20 6c 65 61 73 74 20 | 74 6f 0d 44 69 72 69 63 |t least |to.Diric|
|00001720| 68 6c 65 74 20 2d 2d 2d | 20 66 6f 72 20 6d 6f 72 |hlet ---| for mor|
|00001730| 65 20 69 6e 66 6f 72 6d | 61 74 69 6f 6e 2c 20 63 |e inform|ation, c|
|00001740| 6f 6e 73 75 6c 74 20 5c | 72 65 66 7b 32 7d 2e 20 |onsult \|ref{2}. |
|00001750| 49 6e 20 73 70 69 74 65 | 0d 6f 66 20 74 68 65 20 |In spite|.of the |
|00001760| 72 65 74 75 72 6e 20 74 | 6f 20 74 68 69 73 20 63 |return t|o this c|
|00001770| 6f 6e 63 65 70 74 20 6f | 66 20 66 75 6e 63 74 69 |oncept o|f functi|
|00001780| 6f 6e 2c 20 61 20 6d 6f | 72 65 20 72 65 63 65 6e |on, a mo|re recen|
|00001790| 74 0d 64 65 76 65 6c 6f | 70 6d 65 6e 74 20 68 61 |t.develo|pment ha|
|000017a0| 73 20 70 65 72 70 65 74 | 75 61 74 65 64 20 74 68 |s perpet|uated th|
|000017b0| 65 20 69 64 65 6e 74 69 | 66 69 63 61 74 69 6f 6e |e identi|fication|
|000017c0| 20 6f 66 20 61 20 66 75 | 6e 63 74 69 6f 6e 0d 77 | of a fu|nction.w|
|000017d0| 69 74 68 20 61 20 73 65 | 74 20 6f 66 20 6f 72 64 |ith a se|t of ord|
|000017e0| 65 72 65 64 20 70 61 69 | 72 73 2e 20 5c 62 69 67 |ered pai|rs. \big|
|000017f0| 73 6b 69 70 0d 0d 25 5c | 68 65 61 64 7b 47 72 61 |skip..%\|head{Gra|
|00001800| 70 68 69 6e 67 20 6f 72 | 3a 20 43 6f 6e 66 75 73 |phing or|: Confus|
|00001810| 69 6f 6e 20 48 61 70 70 | 65 6e 73 7d 0d 0d 5c 62 |ion Happ|ens}..\b|
|00001820| 65 67 69 6e 73 65 63 74 | 69 6f 6e 7b 47 72 61 70 |eginsect|ion{Grap|
|00001830| 68 69 6e 67 20 6f 72 3a | 20 43 6f 6e 66 75 73 69 |hing or:| Confusi|
|00001840| 6f 6e 20 48 61 70 70 65 | 6e 73 7d 0d 0d 46 6f 72 |on Happe|ns}..For|
|00001850| 20 6d 61 6e 79 20 79 65 | 61 72 73 20 74 68 65 20 | many ye|ars the |
|00001860| 74 72 65 6e 64 20 69 6e | 20 65 6c 65 6d 65 6e 74 |trend in| element|
|00001870| 61 72 79 20 6d 61 74 68 | 65 6d 61 74 69 63 73 20 |ary math|ematics |
|00001880| 74 65 78 74 73 20 68 61 | 73 0d 62 65 65 6e 20 74 |texts ha|s.been t|
|00001890| 6f 20 69 6e 63 6c 75 64 | 65 20 6d 6f 72 65 20 61 |o includ|e more a|
|000018a0| 6e 64 20 6d 6f 72 65 20 | 64 69 61 67 72 61 6d 73 |nd more |diagrams|
|000018b0| 20 61 6e 64 20 70 69 63 | 74 75 72 65 73 2c 0d 65 | and pic|tures,.e|
|000018c0| 73 70 65 63 69 61 6c 6c | 79 20 6f 66 20 66 75 6e |speciall|y of fun|
|000018d0| 63 74 69 6f 6e 20 67 72 | 61 70 68 73 2e 20 50 65 |ction gr|aphs. Pe|
|000018e0| 72 73 6f 6e 61 6c 20 63 | 6f 6d 70 75 74 65 72 73 |rsonal c|omputers|
|000018f0| 20 61 6e 64 2c 0d 65 73 | 70 65 63 69 61 6c 6c 79 | and,.es|pecially|
|00001900| 2c 20 67 72 61 70 68 69 | 6e 67 20 63 61 6c 63 75 |, graphi|ng calcu|
|00001910| 6c 61 74 6f 72 73 2c 20 | 68 61 76 65 20 6d 61 64 |lators, |have mad|
|00001920| 65 20 66 75 6e 63 74 69 | 6f 6e 20 70 6c 6f 74 74 |e functi|on plott|
|00001930| 69 6e 67 0d 65 61 73 79 | 20 61 6e 64 20 77 69 64 |ing.easy| and wid|
|00001940| 65 6c 79 20 61 76 61 69 | 6c 61 62 6c 65 2e 20 53 |ely avai|lable. S|
|00001950| 69 6e 63 65 20 63 61 6c | 63 75 6c 61 74 6f 72 73 |ince cal|culators|
|00001960| 20 61 6e 64 20 6d 6f 73 | 74 20 73 6f 66 74 77 61 | and mos|t softwa|
|00001970| 72 65 0d 70 61 63 6b 61 | 67 65 73 20 64 72 61 77 |re.packa|ges draw|
|00001980| 20 74 72 61 64 69 74 69 | 6f 6e 61 6c 20 72 65 63 | traditi|onal rec|
|00001990| 74 61 6e 67 75 6c 61 72 | 20 70 6c 6f 74 73 2c 20 |tangular| plots, |
|000019a0| 74 68 61 74 27 73 20 77 | 68 61 74 20 69 73 0d 75 |that's w|hat is.u|
|000019b0| 73 65 64 20 61 6e 64 20 | 74 68 61 74 27 73 20 77 |sed and |that's w|
|000019c0| 68 61 74 20 73 74 75 64 | 65 6e 74 73 20 74 68 69 |hat stud|ents thi|
|000019d0| 6e 6b 20 6f 66 20 77 68 | 65 6e 20 74 68 65 79 20 |nk of wh|en they |
|000019e0| 74 68 69 6e 6b 20 6f 66 | 0d 66 75 6e 63 74 69 6f |think of|.functio|
|000019f0| 6e 73 2e 20 41 6c 74 68 | 6f 75 67 68 20 74 68 65 |ns. Alth|ough the|
|00001a00| 20 45 64 75 63 61 74 69 | 6f 6e 61 6c 6c 79 20 43 | Educati|onally C|
|00001a10| 6f 72 72 65 63 74 20 28 | 45 43 29 20 70 6f 73 69 |orrect (|EC) posi|
|00001a20| 74 69 6f 6e 0d 68 61 73 | 20 62 65 65 6e 20 74 68 |tion.has| been th|
|00001a30| 61 74 20 66 75 6e 63 74 | 69 6f 6e 73 20 61 72 65 |at funct|ions are|
|00001a40| 20 74 6f 20 62 65 20 61 | 70 70 72 6f 61 63 68 65 | to be a|pproache|
|00001a50| 64 20 66 72 6f 6d 20 28 | 61 74 20 6c 65 61 73 74 |d from (|at least|
|00001a60| 29 20 33 0d 70 6f 69 6e | 74 73 20 6f 66 20 76 69 |) 3.poin|ts of vi|
|00001a70| 65 77 2c 20 74 68 65 20 | 73 69 6d 70 6c 65 20 66 |ew, the |simple f|
|00001a80| 61 63 74 20 69 73 20 74 | 68 61 74 20 74 68 65 20 |act is t|hat the |
|00001a90| 74 72 65 6e 64 20 69 73 | 20 74 6f 20 76 69 65 77 |trend is| to view|
|00001aa0| 0d 66 75 6e 63 74 69 6f | 6e 73 20 61 73 20 67 72 |.functio|ns as gr|
|00001ab0| 61 70 68 73 2c 20 6e 6f | 20 6d 61 74 74 65 72 20 |aphs, no| matter |
|00001ac0| 68 6f 77 20 66 75 6e 63 | 74 69 6f 6e 73 20 61 72 |how func|tions ar|
|00001ad0| 65 20 61 63 74 75 61 6c | 6c 79 0d 64 65 66 69 6e |e actual|ly.defin|
|00001ae0| 65 64 2e 0d 0d 48 65 72 | 65 69 6e 20 6c 69 65 73 |ed...Her|ein lies|
|00001af0| 20 74 68 65 20 70 72 6f | 62 6c 65 6d 2e 20 49 66 | the pro|blem. If|
|00001b00| 20 61 20 66 75 6e 63 74 | 69 6f 6e 20 69 73 20 64 | a funct|ion is d|
|00001b10| 65 66 69 6e 65 64 20 62 | 79 20 61 0d 70 72 6f 63 |efined b|y a.proc|
|00001b20| 65 73 73 20 28 61 6c 6c | 20 77 65 6c 6c 2d 64 65 |ess (all| well-de|
|00001b30| 66 69 6e 65 64 20 6d 61 | 74 68 65 6d 61 74 69 63 |fined ma|thematic|
|00001b40| 61 6c 20 66 75 6e 63 74 | 69 6f 6e 73 20 61 72 65 |al funct|ions are|
|00001b50| 29 20 74 68 65 6e 0d 76 | 69 73 75 61 6c 69 7a 69 |) then.v|isualizi|
|00001b60| 6e 67 20 61 20 67 72 61 | 70 68 20 64 6f 65 73 20 |ng a gra|ph does |
|00001b70| 6e 6f 74 20 69 6e 20 61 | 6e 79 20 73 65 6e 73 65 |not in a|ny sense|
|00001b80| 20 63 61 70 74 75 72 65 | 20 74 68 61 74 0d 70 72 | capture| that.pr|
|00001b90| 6f 63 65 73 73 2c 20 6e | 6f 72 20 64 6f 65 73 20 |ocess, n|or does |
|00001ba0| 69 74 20 65 6e 61 62 6c | 65 20 6f 6e 65 20 74 6f |it enabl|e one to|
|00001bb0| 20 73 65 65 20 6f 72 20 | 61 6e 61 6c 79 7a 65 20 | see or |analyze |
|00001bc0| 74 68 65 20 70 72 6f 63 | 65 73 73 2e 0d 41 20 67 |the proc|ess..A g|
|00001bd0| 6f 6f 64 20 65 78 61 6d | 70 6c 65 20 69 73 20 74 |ood exam|ple is t|
|00001be0| 68 65 20 73 6f 2d 63 61 | 6c 6c 65 64 20 60 60 74 |he so-ca|lled ``t|
|00001bf0| 61 6e 67 65 6e 74 20 6c | 69 6e 65 0d 61 70 70 72 |angent l|ine.appr|
|00001c00| 6f 78 69 6d 61 74 69 6f | 6e 2e 27 27 20 4d 79 20 |oximatio|n.'' My |
|00001c10| 73 74 75 64 65 6e 74 73 | 20 68 61 76 65 20 61 62 |students| have ab|
|00001c20| 73 6f 6c 75 74 65 6c 79 | 20 6e 6f 20 74 72 6f 75 |solutely| no trou|
|00001c30| 62 6c 65 0d 61 63 63 65 | 70 74 69 6e 67 20 74 68 |ble.acce|pting th|
|00001c40| 65 20 76 69 73 75 61 6c | 20 69 6d 61 67 65 20 6f |e visual| image o|
|00001c50| 66 20 74 68 65 20 74 61 | 6e 67 65 6e 74 20 74 6f |f the ta|ngent to|
|00001c60| 20 61 20 67 72 61 70 68 | 20 62 65 69 6e 67 0d 63 | a graph| being.c|
|00001c70| 6c 6f 73 65 20 74 6f 20 | 74 68 65 20 67 72 61 70 |lose to |the grap|
|00001c80| 68 20 6e 65 61 72 20 74 | 68 65 20 70 6f 69 6e 74 |h near t|he point|
|00001c90| 20 6f 66 20 74 61 6e 67 | 65 6e 63 79 2e 20 43 6f | of tang|ency. Co|
|00001ca0| 6d 70 75 74 65 72 20 6f | 72 0d 62 6c 61 63 6b 2f |mputer o|r.black/|
|00001cb0| 77 68 69 74 65 20 62 6f | 61 72 64 20 60 60 7a 6f |white bo|ard ``zo|
|00001cc0| 6f 6d 73 27 27 20 63 6f | 6e 76 69 6e 63 65 20 65 |oms'' co|nvince e|
|00001cd0| 76 65 6e 20 74 68 65 20 | 73 6c 6f 77 65 73 74 20 |ven the |slowest |
|00001ce0| 6f 66 20 74 68 65 6d 2e | 0d 54 68 65 79 20 63 61 |of them.|.They ca|
|00001cf0| 6e 20 72 65 70 65 61 74 | 20 62 61 63 6b 20 74 68 |n repeat| back th|
|00001d00| 69 73 20 6e 65 77 20 6c | 6f 63 61 6c 2d 2d 6c 69 |is new l|ocal--li|
|00001d10| 6e 65 61 72 69 7a 61 74 | 69 6f 6e 20 63 61 74 65 |nearizat|ion cate|
|00001d20| 63 68 69 73 6d 0d 69 6e | 73 74 61 6e 74 61 6e 65 |chism.in|stantane|
|00001d30| 6f 75 73 6c 79 20 61 6e | 64 20 69 6e 20 75 6e 69 |ously an|d in uni|
|00001d40| 73 6f 6e 2e 20 4e 65 76 | 65 72 74 68 65 6c 65 73 |son. Nev|ertheles|
|00001d50| 73 2c 20 61 73 6b 20 74 | 68 65 6d 20 74 6f 0d 74 |s, ask t|hem to.t|
|00001d60| 72 61 6e 73 6c 61 74 65 | 20 74 68 69 73 20 70 72 |ranslate| this pr|
|00001d70| 65 63 69 73 65 6c 79 20 | 69 6e 74 6f 20 61 20 73 |ecisely |into a s|
|00001d80| 74 61 74 65 6d 65 6e 74 | 20 74 68 61 74 20 74 68 |tatement| that th|
|00001d90| 65 20 76 61 6c 75 65 20 | 6f 66 0d 6f 6e 65 20 66 |e value |of.one f|
|00001da0| 75 6e 63 74 69 6f 6e 20 | 69 73 20 63 6c 6f 73 65 |unction |is close|
|00001db0| 20 74 6f 20 74 68 65 20 | 76 61 6c 75 65 20 6f 66 | to the |value of|
|00001dc0| 20 61 6e 6f 74 68 65 72 | 20 66 75 6e 63 74 69 6f | another| functio|
|00001dd0| 6e 20 61 6e 64 0d 6d 6f | 73 74 20 77 69 6c 6c 20 |n and.mo|st will |
|00001de0| 62 65 63 6f 6d 65 20 67 | 6c 61 73 73 79 2d 65 79 |become g|lassy-ey|
|00001df0| 65 64 2e 20 45 76 65 6e | 20 61 66 74 65 72 20 61 |ed. Even| after a|
|00001e00| 20 71 75 61 72 74 65 72 | 20 6f 66 20 63 61 6c 63 | quarter| of calc|
|00001e10| 75 6c 75 73 0d 66 72 6f | 6d 20 61 20 70 6f 70 75 |ulus.fro|m a popu|
|00001e20| 6c 61 72 20 76 65 68 69 | 63 6c 65 20 66 6f 72 20 |lar vehi|cle for |
|00001e30| 60 60 72 65 66 6f 72 6d | 27 27 20 74 68 65 79 20 |``reform|'' they |
|00001e40| 64 6f 20 6e 6f 74 20 73 | 65 65 2c 0d 77 69 74 68 |do not s|ee,.with|
|00001e50| 6f 75 74 20 61 20 6c 6f | 74 20 6f 66 20 70 72 6f |out a lo|t of pro|
|00001e60| 6d 70 74 69 6e 67 2c 20 | 74 68 61 74 20 60 60 74 |mpting, |that ``t|
|00001e70| 68 65 20 74 61 6e 67 65 | 6e 74 20 6c 69 6e 65 20 |he tange|nt line |
|00001e80| 63 6c 6f 73 65 20 74 6f | 0d 74 68 65 20 67 72 61 |close to|.the gra|
|00001e90| 70 68 20 61 74 20 24 50 | 24 27 27 20 6d 65 61 6e |ph at $P|$'' mean|
|00001ea0| 73 20 74 68 61 74 20 60 | 60 24 66 28 78 29 5c 61 |s that `|`$f(x)\a|
|00001eb0| 70 70 72 6f 78 20 66 28 | 61 29 20 2b 0d 66 27 28 |pprox f(|a) +.f'(|
|00001ec0| 61 29 28 78 2d 61 29 24 | 27 27 20 66 6f 72 20 24 |a)(x-a)$|'' for $|
|00001ed0| 78 24 20 6e 65 61 72 20 | 24 61 24 2e 20 54 68 65 |x$ near |$a$. The|
|00001ee0| 20 72 65 61 73 6f 6e 20 | 69 73 20 74 68 61 74 20 | reason |is that |
|00001ef0| 74 68 65 79 20 64 6f 6e | 27 74 0d 61 73 73 6f 63 |they don|'t.assoc|
|00001f00| 69 61 74 65 20 74 68 65 | 20 74 61 6e 67 65 6e 74 |iate the| tangent|
|00001f10| 20 6c 69 6e 65 20 77 69 | 74 68 20 74 68 65 20 66 | line wi|th the f|
|00001f20| 75 6e 63 74 69 6f 6e 20 | 24 78 5c 72 69 67 68 74 |unction |$x\right|
|00001f30| 61 72 72 6f 77 0d 66 28 | 61 29 20 2b 20 66 27 28 |arrow.f(|a) + f'(|
|00001f40| 61 29 28 78 2d 61 29 24 | 2e 20 49 6e 20 66 61 63 |a)(x-a)$|. In fac|
|00001f50| 74 2c 20 6f 6e 63 65 20 | 74 68 65 20 67 72 61 70 |t, once |the grap|
|00001f60| 68 20 6f 66 20 24 66 24 | 20 68 61 73 20 62 65 65 |h of $f$| has bee|
|00001f70| 6e 0d 63 6f 6e 73 74 72 | 75 63 74 65 64 2c 20 74 |n.constr|ucted, t|
|00001f80| 68 65 79 20 69 64 65 6e | 74 69 66 79 20 69 74 20 |hey iden|tify it |
|00001f90| 77 69 74 68 20 24 66 24 | 20 61 6e 64 20 66 6f 72 |with $f$| and for|
|00001fa0| 67 65 74 20 74 68 65 20 | 72 75 6c 65 0d 24 78 5c |get the |rule.$x\|
|00001fb0| 72 69 67 68 74 61 72 72 | 6f 77 20 66 28 78 29 24 |rightarr|ow f(x)$|
|00001fc0| 2e 20 54 68 65 20 70 69 | 63 74 75 72 65 20 68 61 |. The pi|cture ha|
|00001fd0| 73 20 73 77 61 6c 6c 6f | 77 65 64 20 69 74 73 20 |s swallo|wed its |
|00001fe0| 63 72 65 61 74 6f 72 2e | 0d 0d 57 68 65 6e 20 74 |creator.|..When t|
|00001ff0| 68 65 73 65 20 73 61 6d | 65 20 73 74 75 64 65 6e |hese sam|e studen|
|00002000| 74 73 20 67 65 74 20 74 | 6f 20 73 6f 70 68 6f 6d |ts get t|o sophom|
|00002010| 6f 72 65 20 63 61 6c 63 | 75 6c 75 73 20 61 6e 64 |ore calc|ulus and|
|00002020| 20 68 61 76 65 20 74 6f | 0d 63 6f 70 65 20 77 69 | have to|.cope wi|
|00002030| 74 68 20 63 75 72 76 65 | 73 20 61 6e 64 20 73 75 |th curve|s and su|
|00002040| 72 66 61 63 65 73 20 70 | 61 72 61 6d 65 74 72 69 |rfaces p|arametri|
|00002050| 7a 65 64 20 62 79 20 66 | 75 6e 63 74 69 6f 6e 73 |zed by f|unctions|
|00002060| 2c 20 74 68 65 79 0d 68 | 61 76 65 20 6e 6f 20 67 |, they.h|ave no g|
|00002070| 72 61 70 68 73 20 74 6f | 20 66 61 6c 6c 20 62 61 |raphs to| fall ba|
|00002080| 63 6b 20 6f 6e 2e 20 54 | 68 65 79 20 68 61 76 65 |ck on. T|hey have|
|00002090| 20 6e 6f 74 20 62 65 65 | 6e 20 74 72 61 69 6e 65 | not bee|n traine|
|000020a0| 64 20 74 6f 0d 74 68 69 | 6e 6b 20 6f 66 20 61 20 |d to.thi|nk of a |
|000020b0| 66 75 6e 63 74 69 6f 6e | 20 61 73 20 7b 5c 69 74 |function| as {\it|
|000020c0| 20 64 6f 69 6e 67 20 73 | 6f 6d 65 74 68 69 6e 67 | doing s|omething|
|000020d0| 7d 2c 20 6e 61 6d 65 6c | 79 0d 63 72 65 61 74 69 |}, namel|y.creati|
|000020e0| 6e 67 20 61 6e 20 61 73 | 73 6f 63 69 61 74 69 6f |ng an as|sociatio|
|000020f0| 6e 20 6f 72 20 6d 61 70 | 70 69 6e 67 3a 20 24 50 |n or map|ping: $P|
|00002100| 5c 72 69 67 68 74 61 72 | 72 6f 77 20 51 24 2c 20 |\rightar|row Q$, |
|00002110| 73 69 6e 63 65 0d 74 68 | 65 79 20 68 61 76 65 20 |since.th|ey have |
|00002120| 6e 65 76 65 72 20 74 68 | 6f 75 67 68 74 20 6f 66 |never th|ought of|
|00002130| 20 74 68 65 69 72 20 66 | 72 65 73 68 6d 61 6e 20 | their f|reshman |
|00002140| 63 61 6c 63 75 6c 75 73 | 20 66 75 6e 63 74 69 6f |calculus| functio|
|00002150| 6e 73 0d 69 6e 20 74 68 | 69 73 20 77 61 79 2e 20 |ns.in th|is way. |
|00002160| 57 65 6c 6c 20 69 6e 74 | 6f 20 6d 75 6c 74 69 76 |Well int|o multiv|
|00002170| 61 72 69 61 62 6c 65 20 | 63 61 6c 63 75 6c 75 73 |ariable |calculus|
|00002180| 2c 20 68 61 72 64 6c 79 | 20 61 6e 79 20 6f 66 0d |, hardly| any of.|
|00002190| 6d 79 20 73 74 75 64 65 | 6e 74 73 20 63 6f 75 6c |my stude|nts coul|
|000021a0| 64 20 65 78 70 6c 61 69 | 6e 20 77 68 79 20 74 68 |d explai|n why th|
|000021b0| 65 20 7b 5c 69 74 20 67 | 72 61 70 68 7d 20 6f 66 |e {\it g|raph} of|
|000021c0| 0d 24 28 78 2c 79 29 5c | 72 69 67 68 74 61 72 72 |.$(x,y)\|rightarr|
|000021d0| 6f 77 20 66 28 78 2c 79 | 29 24 20 69 73 20 74 68 |ow f(x,y|)$ is th|
|000021e0| 65 20 73 61 6d 65 20 61 | 73 20 74 68 65 20 7b 5c |e same a|s the {\|
|000021f0| 69 74 20 69 6d 61 67 65 | 7d 20 6f 66 0d 24 28 78 |it image|} of.$(x|
|00002200| 2c 79 29 5c 72 69 67 68 | 74 61 72 72 6f 77 20 28 |,y)\righ|tarrow (|
|00002210| 78 2c 79 2c 66 28 78 2c | 79 29 29 24 2c 20 65 76 |x,y,f(x,|y))$, ev|
|00002220| 65 6e 20 61 66 74 65 72 | 20 77 65 20 73 70 65 6e |en after| we spen|
|00002230| 74 20 61 20 6c 6f 74 20 | 6f 66 0d 74 69 6d 65 20 |t a lot |of.time |
|00002240| 77 69 74 68 20 65 78 61 | 6d 70 6c 65 73 20 6f 66 |with exa|mples of|
|00002250| 20 62 6f 74 68 20 63 6f | 6e 63 65 70 74 73 2e 0d | both co|ncepts..|
|00002260| 0d 4e 6f 20 73 74 75 64 | 65 6e 74 20 6f 72 20 65 |.No stud|ent or e|
|00002270| 6c 65 6d 65 6e 74 61 72 | 79 20 74 65 78 74 20 49 |lementar|y text I|
|00002280| 20 68 61 76 65 20 65 6e | 63 6f 75 6e 74 65 72 65 | have en|countere|
|00002290| 64 20 68 61 73 20 65 78 | 70 6c 61 69 6e 65 64 0d |d has ex|plained.|
|000022a0| 77 68 61 74 20 60 60 70 | 6f 6c 61 72 20 67 72 61 |what ``p|olar gra|
|000022b0| 70 68 73 27 27 20 68 61 | 76 65 20 74 6f 20 64 6f |phs'' ha|ve to do|
|000022c0| 20 77 69 74 68 20 67 72 | 61 70 68 69 6e 67 2c 20 | with gr|aphing, |
|000022d0| 6f 72 20 77 68 61 74 20 | 70 6f 6c 61 72 0d 63 6f |or what |polar.co|
|000022e0| 6f 72 64 69 6e 61 74 65 | 73 20 68 61 76 65 20 74 |ordinate|s have t|
|000022f0| 6f 20 64 6f 20 77 69 74 | 68 20 70 6c 6f 74 74 69 |o do wit|h plotti|
|00002300| 6e 67 20 66 75 6e 63 74 | 69 6f 6e 73 2e 20 54 68 |ng funct|ions. Th|
|00002310| 69 6e 6b 20 61 62 6f 75 | 74 0d 69 74 2e 0d 5c 6d |ink abou|t.it..\m|
|00002320| 65 64 73 6b 69 70 0d 0d | 5c 62 65 67 69 6e 73 65 |edskip..|\beginse|
|00002330| 63 74 69 6f 6e 7b 4e 6f | 74 61 74 69 6f 6e 20 52 |ction{No|tation R|
|00002340| 65 66 6f 72 6d 3a 20 41 | 20 46 69 72 73 74 20 53 |eform: A| First S|
|00002350| 74 65 70 7d 0d 0d 4d 61 | 74 68 65 6d 61 74 69 63 |tep}..Ma|thematic|
|00002360| 69 61 6e 73 20 61 6e 64 | 20 73 63 69 65 6e 74 69 |ians and| scienti|
|00002370| 73 74 73 20 72 6f 75 74 | 69 6e 65 6c 79 20 75 73 |sts rout|inely us|
|00002380| 65 20 70 68 72 61 73 65 | 73 20 73 75 63 68 20 61 |e phrase|s such a|
|00002390| 73 3a 0d 60 60 43 6f 6e | 73 69 64 65 72 20 74 68 |s:.``Con|sider th|
|000023a0| 65 20 66 75 6e 63 74 69 | 6f 6e 20 24 79 3d 24 20 |e functi|on $y=$ |
|000023b0| 5b 73 6f 6d 65 20 65 78 | 70 72 65 73 73 69 6f 6e |[some ex|pression|
|000023c0| 5d 2e 27 27 20 20 49 6e | 64 65 65 64 2c 0d 69 6e |].'' In|deed,.in|
|000023d0| 20 6d 6f 73 74 20 74 65 | 78 74 73 20 74 68 69 73 | most te|xts this|
|000023e0| 20 69 73 20 74 68 65 20 | 73 74 61 6e 64 61 72 64 | is the |standard|
|000023f0| 20 77 61 79 20 6f 66 20 | 70 72 65 73 65 6e 74 69 | way of |presenti|
|00002400| 6e 67 20 61 20 66 75 6e | 63 74 69 6f 6e 20 66 6f |ng a fun|ction fo|
|00002410| 72 0d 63 6f 6e 73 69 64 | 65 72 61 74 69 6f 6e 2e |r.consid|eration.|
|00002420| 20 41 6c 74 68 6f 75 67 | 68 20 74 68 69 73 20 69 | Althoug|h this i|
|00002430| 73 20 6e 65 61 72 6c 79 | 20 75 6e 69 76 65 72 73 |s nearly| univers|
|00002440| 61 6c 20 61 6e 64 20 71 | 75 69 74 65 20 77 69 64 |al and q|uite wid|
|00002450| 65 6c 79 0d 75 6e 64 65 | 72 73 74 6f 6f 64 20 62 |ely.unde|rstood b|
|00002460| 79 20 70 72 6f 66 65 73 | 73 69 6f 6e 61 6c 73 20 |y profes|sionals |
|00002470| 61 6e 64 20 72 65 6c 61 | 74 69 76 65 6c 79 20 61 |and rela|tively a|
|00002480| 64 76 61 6e 63 65 64 20 | 73 74 75 64 65 6e 74 73 |dvanced |students|
|00002490| 2c 0d 49 20 62 65 6c 69 | 65 76 65 20 74 68 61 74 |,.I beli|eve that|
|000024a0| 20 69 6e 20 68 69 67 68 | 20 73 63 68 6f 6f 6c 20 | in high| school |
|000024b0| 70 72 65 63 61 6c 63 75 | 6c 75 73 20 63 6f 75 72 |precalcu|lus cour|
|000024c0| 73 65 73 20 61 6e 64 20 | 6c 6f 77 65 72 0d 6c 65 |ses and |lower.le|
|000024d0| 76 65 6c 20 75 6e 64 65 | 72 67 72 61 64 75 61 74 |vel unde|rgraduat|
|000024e0| 65 20 63 6f 75 72 73 65 | 73 20 2d 2d 2d 20 74 68 |e course|s --- th|
|000024f0| 65 20 74 72 61 69 6e 69 | 6e 67 20 67 72 6f 75 6e |e traini|ng groun|
|00002500| 64 73 20 66 6f 72 0d 66 | 75 6e 63 74 69 6f 6e 20 |ds for.f|unction |
|00002510| 75 73 65 72 73 20 2d 2d | 2d 20 77 65 20 77 6f 75 |users --|- we wou|
|00002520| 6c 64 20 64 6f 20 77 65 | 6c 6c 20 74 6f 20 74 61 |ld do we|ll to ta|
|00002530| 6b 65 20 6d 6f 72 65 20 | 63 61 72 65 20 69 6e 20 |ke more |care in |
|00002540| 6f 75 72 0d 6e 6f 74 61 | 74 69 6f 6e 2e 0d 0d 4f |our.nota|tion...O|
|00002550| 6e 65 20 6f 66 20 74 68 | 65 20 73 69 6d 70 6c 65 |ne of th|e simple|
|00002560| 73 74 20 69 6d 70 72 6f | 76 65 6d 65 6e 74 73 20 |st impro|vements |
|00002570| 69 73 20 74 6f 20 75 73 | 65 20 60 60 61 72 72 6f |is to us|e ``arro|
|00002580| 77 27 27 20 6e 6f 74 61 | 74 69 6f 6e 0d 66 6f 72 |w'' nota|tion.for|
|00002590| 20 66 75 6e 63 74 69 6f | 6e 73 3a 20 24 66 3a 78 | functio|ns: $f:x|
|000025a0| 5c 6c 6f 6e 67 6d 61 70 | 73 74 6f 20 78 5e 33 2d |\longmap|sto x^3-|
|000025b0| 35 78 5e 32 2b 34 78 2d | 31 24 2e 20 54 68 69 73 |5x^2+4x-|1$. This|
|000025c0| 20 6e 6f 74 61 74 69 6f | 6e 0d 69 73 20 75 73 65 | notatio|n.is use|
|000025d0| 64 20 74 68 72 6f 75 67 | 68 6f 75 74 20 73 6f 6d |d throug|hout som|
|000025e0| 65 20 72 65 63 65 6e 74 | 20 74 65 78 74 73 20 28 |e recent| texts (|
|000025f0| 65 2e 67 2e 20 5c 72 65 | 66 7b 34 7d 29 2c 0d 61 |e.g. \re|f{4}),.a|
|00002600| 6e 64 20 68 61 73 20 74 | 68 65 20 6f 62 76 69 6f |nd has t|he obvio|
|00002610| 75 73 20 61 64 76 61 6e | 74 61 67 65 20 6f 66 20 |us advan|tage of |
|00002620| 65 6d 70 68 61 73 69 7a | 69 6e 67 20 74 68 65 20 |emphasiz|ing the |
|00002630| 64 79 6e 61 6d 69 63 20 | 6f 72 0d 70 72 6f 63 65 |dynamic |or.proce|
|00002640| 73 73 20 6e 61 74 75 72 | 65 20 6f 66 20 66 75 6e |ss natur|e of fun|
|00002650| 63 74 69 6f 6e 73 2e 20 | 4f 6e 65 20 6f 66 20 69 |ctions. |One of i|
|00002660| 74 73 20 64 72 61 77 62 | 61 63 6b 73 20 69 73 20 |ts drawb|acks is |
|00002670| 74 68 61 74 20 69 74 0d | 74 69 65 73 20 74 68 65 |that it.|ties the|
|00002680| 20 73 74 75 64 65 6e 74 | 20 74 6f 20 74 68 65 20 | student| to the |
|00002690| 6e 61 6d 65 20 6f 66 20 | 61 20 70 61 72 74 69 63 |name of |a partic|
|000026a0| 75 6c 61 72 20 76 61 72 | 69 61 62 6c 65 2c 20 69 |ular var|iable, i|
|000026b0| 6e 20 74 68 69 73 0d 63 | 61 73 65 20 24 78 24 2e |n this.c|ase $x$.|
|000026c0| 20 41 6e 20 61 6c 74 65 | 72 6e 61 74 69 76 65 2c | An alte|rnative,|
|000026d0| 20 6f 6e 65 20 74 68 61 | 74 20 49 20 75 73 65 20 | one tha|t I use |
|000026e0| 66 72 65 71 75 65 6e 74 | 6c 79 2c 20 69 73 20 74 |frequent|ly, is t|
|000026f0| 68 65 0d 60 60 62 6c 61 | 6e 6b 27 27 20 6e 6f 74 |he.``bla|nk'' not|
|00002700| 61 74 69 6f 6e 3a 20 24 | 66 3a 28 5c 20 29 5c 6c |ation: $|f:(\ )\l|
|00002710| 6f 6e 67 6d 61 70 73 74 | 6f 20 28 5c 20 29 5e 33 |ongmapst|o (\ )^3|
|00002720| 2d 35 28 5c 20 29 5e 32 | 2b 34 28 5c 0d 29 2d 31 |-5(\ )^2|+4(\.)-1|
|00002730| 24 2e 20 45 76 61 6c 75 | 61 74 69 6f 6e 20 69 73 |$. Evalu|ation is|
|00002740| 20 64 6f 6e 65 20 62 79 | 20 73 69 6d 70 6c 79 20 | done by| simply |
|00002750| 66 69 6c 6c 69 6e 67 20 | 69 6e 20 74 68 65 20 62 |filling |in the b|
|00002760| 6c 61 6e 6b 2e 20 54 68 | 69 73 0d 6d 61 6b 65 73 |lank. Th|is.makes|
|00002770| 20 63 6f 6d 70 6f 73 69 | 74 69 6f 6e 20 6f 66 20 | composi|tion of |
|00002780| 66 75 6e 63 74 69 6f 6e | 73 20 76 65 72 79 20 65 |function|s very e|
|00002790| 61 73 79 3b 20 66 6f 72 | 20 65 78 61 6d 70 6c 65 |asy; for| example|
|000027a0| 3a 0d 24 24 66 3a 28 39 | 78 2b 37 29 5c 6c 6f 6e |:.$$f:(9|x+7)\lon|
|000027b0| 67 6d 61 70 73 74 6f 28 | 39 78 2d 37 29 5e 33 2d |gmapsto(|9x-7)^3-|
|000027c0| 35 28 39 78 2d 37 29 5e | 32 2b 34 28 39 78 2d 37 |5(9x-7)^|2+4(9x-7|
|000027d0| 29 2d 31 2e 24 24 0d 0d | 0d 46 69 6e 61 6c 6c 79 |)-1.$$..|.Finally|
|000027e0| 2c 20 6d 61 6e 79 20 6f | 66 20 74 68 65 20 6e 65 |, many o|f the ne|
|000027f0| 77 65 72 20 61 6c 67 65 | 62 72 61 20 61 6e 64 20 |wer alge|bra and |
|00002800| 70 72 65 63 61 6c 63 75 | 6c 75 73 20 74 65 78 74 |precalcu|lus text|
|00002810| 73 20 6d 61 6b 65 0d 66 | 72 65 71 75 65 6e 74 20 |s make.f|requent |
|00002820| 75 73 65 20 6f 66 20 60 | 60 66 75 6e 63 74 69 6f |use of `|`functio|
|00002830| 6e 20 62 6f 78 65 73 27 | 27 3a 0d 5c 62 69 67 73 |n boxes'|':.\bigs|
|00002840| 6b 69 70 0d 0d 5c 63 65 | 6e 74 65 72 6c 69 6e 65 |kip..\ce|nterline|
|00002850| 7b 5c 68 66 69 6c 6c 0d | 5c 66 62 6f 78 7b 78 7d |{\hfill.|\fbox{x}|
|00002860| 7b 66 7d 7b 66 28 78 29 | 7d 7b 2e 37 74 72 75 65 |{f}{f(x)|}{.7true|
|00002870| 69 6e 7d 5c 68 66 69 6c | 6c 0d 5c 66 62 6f 78 7b |in}\hfil|l.\fbox{|
|00002880| 74 7d 7b 5c 73 69 6e 28 | 5c 20 29 7d 7b 5c 73 69 |t}{\sin(|\ )}{\si|
|00002890| 6e 28 74 29 7d 7b 2e 37 | 35 74 72 75 65 69 6e 7d |n(t)}{.7|5truein}|
|000028a0| 5c 68 66 69 6c 6c 0d 7d | 0d 5c 6d 65 64 73 6b 69 |\hfill.}|.\medski|
|000028b0| 70 0d 0d 5c 63 65 6e 74 | 65 72 6c 69 6e 65 7b 5c |p..\cent|erline{\|
|000028c0| 68 66 69 6c 6c 0d 5c 66 | 62 6f 78 7b 78 7d 7b 34 |hfill.\f|box{x}{4|
|000028d0| 28 5c 20 29 5e 33 2d 32 | 28 5c 20 29 2b 37 7d 7b |(\ )^3-2|(\ )+7}{|
|000028e0| 34 78 5e 33 2d 32 78 2b | 37 7d 7b 31 2e 32 74 72 |4x^3-2x+|7}{1.2tr|
|000028f0| 75 65 69 6e 7d 5c 68 66 | 69 6c 6c 0d 5c 66 62 6f |uein}\hf|ill.\fbo|
|00002900| 78 7b 7b 5c 70 69 2f 36 | 7d 7d 7b 5c 73 69 6e 28 |x{{\pi/6|}}{\sin(|
|00002910| 5c 20 29 7d 7b 7b 31 2f | 32 7d 7d 7b 2e 38 74 72 |\ )}{{1/|2}}{.8tr|
|00002920| 75 65 69 6e 7d 5c 68 66 | 69 6c 6c 0d 7d 0d 0d 5c |uein}\hf|ill.}..\|
|00002930| 62 69 67 73 6b 69 70 0d | 0d 5c 62 65 67 69 6e 73 |bigskip.|.\begins|
|00002940| 65 63 74 69 6f 6e 7b 4d | 61 70 70 69 6e 67 20 44 |ection{M|apping D|
|00002950| 69 61 67 72 61 6d 73 7d | 0d 0d 54 68 65 20 6e 6f |iagrams}|..The no|
|00002960| 74 61 74 69 6f 6e 20 24 | 79 3d 66 28 78 29 24 20 |tation $|y=f(x)$ |
|00002970| 61 6e 64 20 74 68 65 20 | 73 74 61 6e 64 61 72 64 |and the |standard|
|00002980| 20 67 72 61 70 68 2c 20 | 75 73 69 6e 67 20 6f 72 | graph, |using or|
|00002990| 64 65 72 65 64 0d 70 61 | 69 72 73 2c 20 61 72 65 |dered.pa|irs, are|
|000029a0| 20 73 74 61 74 69 63 20 | 72 65 70 72 65 73 65 6e | static |represen|
|000029b0| 74 61 74 69 6f 6e 73 20 | 6f 66 20 61 20 66 75 6e |tations |of a fun|
|000029c0| 63 74 69 6f 6e 2e 20 4f | 6e 20 74 68 65 20 6f 74 |ction. O|n the ot|
|000029d0| 68 65 72 0d 68 61 6e 64 | 2c 20 74 68 65 20 66 6f |her.hand|, the fo|
|000029e0| 72 6d 73 20 6f 66 20 6e | 6f 74 61 74 69 6f 6e 20 |rms of n|otation |
|000029f0| 6a 75 73 74 20 64 65 73 | 63 72 69 62 65 64 20 63 |just des|cribed c|
|00002a00| 61 70 74 75 72 65 20 74 | 68 65 20 64 79 6e 61 6d |apture t|he dynam|
|00002a10| 69 63 0d 6e 61 74 75 72 | 65 20 6f 66 20 66 75 6e |ic.natur|e of fun|
|00002a20| 63 74 69 6f 6e 73 2e 20 | 57 68 61 74 20 73 68 6f |ctions. |What sho|
|00002a30| 75 6c 64 20 62 65 20 74 | 68 65 20 64 79 6e 61 6d |uld be t|he dynam|
|00002a40| 69 63 20 76 69 73 75 61 | 6c 20 69 6d 61 67 65 0d |ic visua|l image.|
|00002a50| 63 6f 72 72 65 73 70 6f | 6e 64 69 6e 67 20 74 6f |correspo|nding to|
|00002a60| 20 74 68 65 20 73 74 61 | 74 69 63 20 67 72 61 70 | the sta|tic grap|
|00002a70| 68 3f 20 4f 6e 65 20 69 | 64 65 61 20 74 68 61 74 |h? One i|dea that|
|00002a80| 20 68 61 73 20 62 65 65 | 6e 20 75 73 65 64 0d 69 | has bee|n used.i|
|00002a90| 6e 20 76 61 72 69 6f 75 | 73 20 74 65 78 74 73 20 |n variou|s texts |
|00002aa0| 61 6e 64 20 61 72 74 69 | 63 6c 65 73 20 69 73 20 |and arti|cles is |
|00002ab0| 74 68 65 20 7b 5c 69 74 | 20 6d 61 70 70 69 6e 67 |the {\it| mapping|
|00002ac0| 20 64 69 61 67 72 61 6d | 7d 2e 0d 42 61 73 69 63 | diagram|}..Basic|
|00002ad0| 61 6c 6c 79 2c 20 73 75 | 63 68 20 61 20 64 69 61 |ally, su|ch a dia|
|00002ae0| 67 72 61 6d 20 69 73 20 | 66 6f 72 6d 65 64 20 66 |gram is |formed f|
|00002af0| 72 6f 6d 20 74 77 6f 20 | 70 61 72 61 6c 6c 65 6c |rom two |parallel|
|00002b00| 20 6c 69 6e 65 73 2c 0d | 6f 6e 65 20 72 65 70 72 | lines,.|one repr|
|00002b10| 65 73 65 6e 74 69 6e 67 | 20 74 68 65 20 64 6f 6d |esenting| the dom|
|00002b20| 61 69 6e 20 6f 66 20 61 | 20 66 75 6e 63 74 69 6f |ain of a| functio|
|00002b30| 6e 20 24 66 24 2c 20 74 | 68 65 20 6f 74 68 65 72 |n $f$, t|he other|
|00002b40| 0d 72 65 70 72 65 73 65 | 6e 74 69 6e 67 20 74 68 |.represe|nting th|
|00002b50| 65 20 72 61 6e 67 65 2e | 20 57 65 20 73 68 61 6c |e range.| We shal|
|00002b60| 6c 20 74 61 6b 65 20 74 | 68 65 6d 20 74 6f 20 62 |l take t|hem to b|
|00002b70| 65 20 76 65 72 74 69 63 | 61 6c 0d 6c 69 6e 65 73 |e vertic|al.lines|
|00002b80| 2c 20 77 69 74 68 20 74 | 68 65 20 64 6f 6d 61 69 |, with t|he domai|
|00002b90| 6e 20 6c 69 6e 65 20 74 | 6f 20 74 68 65 20 6c 65 |n line t|o the le|
|00002ba0| 66 74 20 6f 66 20 74 68 | 65 20 72 61 6e 67 65 20 |ft of th|e range |
|00002bb0| 6c 69 6e 65 2e 0d 46 75 | 6e 63 74 69 6f 6e 20 65 |line..Fu|nction e|
|00002bc0| 76 61 6c 75 61 74 69 6f | 6e 20 69 73 20 72 65 70 |valuatio|n is rep|
|00002bd0| 72 65 73 65 6e 74 65 64 | 20 62 79 20 64 72 61 77 |resented| by draw|
|00002be0| 69 6e 67 20 61 20 6c 69 | 6e 65 20 66 72 6f 6d 20 |ing a li|ne from |
|00002bf0| 61 0d 6e 75 6d 62 65 72 | 20 24 78 24 20 6f 6e 20 |a.number| $x$ on |
|00002c00| 74 68 65 20 64 6f 6d 61 | 69 6e 20 6c 69 6e 65 20 |the doma|in line |
|00002c10| 74 6f 20 69 74 73 20 69 | 6d 61 67 65 20 24 66 28 |to its i|mage $f(|
|00002c20| 78 29 24 20 6f 6e 20 74 | 68 65 0d 72 61 6e 67 65 |x)$ on t|he.range|
|00002c30| 20 6c 69 6e 65 2e 20 57 | 65 20 63 61 6c 6c 20 74 | line. W|e call t|
|00002c40| 68 69 73 20 74 68 65 20 | 7b 5c 69 74 20 6d 61 70 |his the |{\it map|
|00002c50| 70 69 6e 67 20 6c 69 6e | 65 20 61 74 20 24 78 24 |ping lin|e at $x$|
|00002c60| 7d 2e 20 46 6f 72 0d 74 | 68 65 20 6d 6f 6d 65 6e |}. For.t|he momen|
|00002c70| 74 2c 20 6c 65 74 27 73 | 20 75 73 65 20 65 71 75 |t, let's| use equ|
|00002c80| 61 6c 20 73 63 61 6c 65 | 73 20 6f 6e 20 74 68 65 |al scale|s on the|
|00002c90| 20 64 6f 6d 61 69 6e 20 | 61 6e 64 20 72 61 6e 67 | domain |and rang|
|00002ca0| 65 2c 0d 61 6e 64 20 70 | 6f 73 69 74 69 6f 6e 20 |e,.and p|osition |
|00002cb0| 74 68 65 6d 20 73 6f 20 | 74 68 61 74 20 74 68 65 |them so |that the|
|00002cc0| 20 70 6f 69 6e 74 73 20 | 72 65 70 72 65 73 65 6e | points |represen|
|00002cd0| 74 69 6e 67 20 30 20 6f | 6e 20 65 61 63 68 0d 61 |ting 0 o|n each.a|
|00002ce0| 72 65 20 61 74 20 74 68 | 65 20 73 61 6d 65 20 68 |re at th|e same h|
|00002cf0| 6f 72 69 7a 6f 6e 74 61 | 6c 20 6c 65 76 65 6c 2e |orizonta|l level.|
|00002d00| 0d 0d 46 69 67 75 72 65 | 20 31 20 73 68 6f 77 73 |..Figure| 1 shows|
|00002d10| 20 73 6f 6d 65 20 6d 61 | 70 70 69 6e 67 20 6c 69 | some ma|pping li|
|00002d20| 6e 65 73 20 66 6f 72 20 | 61 20 66 75 6e 63 74 69 |nes for |a functi|
|00002d30| 6f 6e 20 24 66 24 2e 20 | 4e 6f 74 65 0d 74 68 61 |on $f$. |Note.tha|
|00002d40| 74 20 77 68 65 72 65 20 | 74 68 65 20 66 75 6e 63 |t where |the func|
|00002d50| 74 69 6f 6e 20 69 73 20 | 7b 5c 69 74 20 64 65 63 |tion is |{\it dec|
|00002d60| 72 65 61 73 69 6e 67 7d | 2c 20 73 61 79 20 62 65 |reasing}|, say be|
|00002d70| 74 77 65 65 6e 0d 64 6f | 6d 61 69 6e 20 70 6f 69 |tween.do|main poi|
|00002d80| 6e 74 73 20 24 78 5f 33 | 5c 61 6e 64 20 78 5f 34 |nts $x_3|\and x_4|
|00002d90| 24 2c 20 74 68 65 20 6d | 61 70 70 69 6e 67 20 6c |$, the m|apping l|
|00002da0| 69 6e 65 73 20 7b 5c 69 | 74 20 6d 75 73 74 0d 63 |ines {\i|t must.c|
|00002db0| 72 6f 73 73 7d 20 73 6f | 6d 65 77 68 65 72 65 20 |ross} so|mewhere |
|00002dc0| 62 65 74 77 65 65 6e 20 | 74 68 65 20 64 6f 6d 61 |between |the doma|
|00002dd0| 69 6e 20 61 6e 64 20 72 | 61 6e 67 65 20 6c 69 6e |in and r|ange lin|
|00002de0| 65 73 2c 20 73 69 6e 63 | 65 0d 24 78 5f 34 20 3c |es, sinc|e.$x_4 <|
|00002df0| 20 78 5f 33 5c 52 69 67 | 68 74 61 72 72 6f 77 20 | x_3\Rig|htarrow |
|00002e00| 66 28 78 5f 34 29 20 3e | 20 66 28 78 5f 33 29 24 |f(x_4) >| f(x_3)$|
|00002e10| 2e 0d 0d 5c 6d 65 64 73 | 6b 69 70 0d 5c 6c 69 6e |...\meds|kip.\lin|
|00002e20| 65 7b 5c 68 66 69 6c 6c | 0d 5c 76 62 6f 78 20 74 |e{\hfill|.\vbox t|
|00002e30| 6f 20 32 2e 35 74 72 75 | 65 69 6e 7b 5c 68 73 69 |o 2.5tru|ein{\hsi|
|00002e40| 7a 65 33 74 72 75 65 69 | 6e 5c 76 66 69 6c 6c 5c |ze3truei|n\vfill\|
|00002e50| 73 70 65 63 69 61 6c 7b | 70 63 6c 3a 66 76 2e 70 |special{|pcl:fv.p|
|00002e60| 63 6c 7d 0d 5c 68 66 69 | 6c 6c 7d 5c 68 66 69 6c |cl}.\hfi|ll}\hfil|
|00002e70| 6c 7d 0d 5c 73 6d 61 6c | 6c 73 6b 69 70 0d 5c 63 |l}.\smal|lskip.\c|
|00002e80| 65 6e 74 65 72 6c 69 6e | 65 7b 5c 62 66 20 46 69 |enterlin|e{\bf Fi|
|00002e90| 67 75 72 65 20 31 7d 0d | 5c 6d 65 64 73 6b 69 70 |gure 1}.|\medskip|
|00002ea0| 0d 0d 46 72 6f 6d 20 74 | 68 65 20 70 65 72 73 70 |..From t|he persp|
|00002eb0| 65 63 74 69 76 65 20 6f | 66 20 6d 61 70 70 69 6e |ective o|f mappin|
|00002ec0| 67 20 64 69 61 67 72 61 | 6d 73 2c 20 7b 5c 69 74 |g diagra|ms, {\it|
|00002ed0| 20 6c 69 6e 65 61 72 0d | 66 75 6e 63 74 69 6f 6e | linear.|function|
|00002ee0| 73 7d 20 24 78 5c 6d 61 | 70 73 74 6f 20 61 78 2b |s} $x\ma|psto ax+|
|00002ef0| 20 62 24 20 61 72 65 20 | 63 68 61 72 61 63 74 65 | b$ are |characte|
|00002f00| 72 69 7a 65 64 20 62 79 | 20 74 68 65 20 70 72 6f |rized by| the pro|
|00002f10| 70 65 72 74 79 0d 74 68 | 61 74 20 74 68 65 79 20 |perty.th|at they |
|00002f20| 73 65 6e 64 20 65 71 75 | 61 6c 6c 79 20 73 70 61 |send equ|ally spa|
|00002f30| 63 65 64 20 70 6f 69 6e | 74 73 20 69 6e 74 6f 20 |ced poin|ts into |
|00002f40| 65 71 75 61 6c 6c 79 20 | 73 70 61 63 65 64 0d 70 |equally |spaced.p|
|00002f50| 6f 69 6e 74 73 2e 20 49 | 74 20 69 73 20 61 6c 73 |oints. I|t is als|
|00002f60| 6f 20 61 6e 20 65 6c 65 | 6d 65 6e 74 61 72 79 20 |o an ele|mentary |
|00002f70| 74 68 65 6f 72 65 6d 20 | 74 68 61 74 20 61 20 66 |theorem |that a f|
|00002f80| 75 6e 63 74 69 6f 6e 20 | 69 73 0d 6c 69 6e 65 61 |unction |is.linea|
|00002f90| 72 20 69 66 20 61 6e 64 | 20 6f 6e 6c 79 20 69 66 |r if and| only if|
|00002fa0| 20 69 74 20 68 61 73 20 | 61 20 60 60 66 6f 63 61 | it has |a ``foca|
|00002fb0| 6c 20 70 6f 69 6e 74 2e | 27 27 20 49 6e 20 6f 74 |l point.|'' In ot|
|00002fc0| 68 65 72 0d 77 6f 72 64 | 73 2c 20 74 68 65 72 65 |her.word|s, there|
|00002fd0| 20 69 73 20 73 6f 6d 65 | 20 70 6f 69 6e 74 20 24 | is some| point $|
|00002fe0| 50 24 20 6e 6f 74 20 6f | 6e 20 74 68 65 20 64 6f |P$ not o|n the do|
|00002ff0| 6d 61 69 6e 20 6c 69 6e | 65 20 73 75 63 68 0d 74 |main lin|e such.t|
|00003000| 68 61 74 20 66 6f 72 20 | 61 6e 79 20 24 78 24 2c |hat for |any $x$,|
|00003010| 20 24 66 28 78 29 24 20 | 69 73 20 64 65 74 65 72 | $f(x)$ |is deter|
|00003020| 6d 69 6e 65 64 20 62 79 | 20 63 6f 6e 73 74 72 75 |mined by| constru|
|00003030| 63 74 69 6e 67 20 61 20 | 6c 69 6e 65 0d 6a 6f 69 |cting a |line.joi|
|00003040| 6e 69 6e 67 20 24 78 24 | 20 61 6e 64 20 24 50 24 |ning $x$| and $P$|
|00003050| 20 61 6e 64 20 73 65 65 | 69 6e 67 20 77 68 65 72 | and see|ing wher|
|00003060| 65 20 74 68 69 73 20 6c | 69 6e 65 20 69 6e 74 65 |e this l|ine inte|
|00003070| 72 73 65 63 74 73 20 74 | 68 65 0d 72 61 6e 67 65 |rsects t|he.range|
|00003080| 20 6c 69 6e 65 2e 20 46 | 6f 63 61 6c 20 70 6f 69 | line. F|ocal poi|
|00003090| 6e 74 73 20 74 6f 20 74 | 68 65 20 72 69 67 68 74 |nts to t|he right|
|000030a0| 20 6f 66 20 74 68 65 20 | 72 61 6e 67 65 20 6c 69 | of the |range li|
|000030b0| 6e 65 0d 63 6f 72 72 65 | 73 70 6f 6e 64 20 74 6f |ne.corre|spond to|
|000030c0| 20 76 61 6c 75 65 73 20 | 6f 66 20 24 61 24 20 73 | values |of $a$ s|
|000030d0| 75 63 68 20 74 68 61 74 | 20 24 30 3c 61 3c 31 24 |uch that| $0<a<1$|
|000030e0| 2e 20 46 6f 72 20 24 50 | 24 20 7b 5c 69 74 0d 6f |. For $P|$ {\it.o|
|000030f0| 6e 7d 20 74 68 65 20 72 | 61 6e 67 65 20 6c 69 6e |n} the r|ange lin|
|00003100| 65 2c 20 77 65 20 67 65 | 74 20 74 68 65 20 7b 5c |e, we ge|t the {\|
|00003110| 69 74 20 63 6f 6e 73 74 | 61 6e 74 7d 20 6c 69 6e |it const|ant} lin|
|00003120| 65 61 72 20 66 75 6e 63 | 74 69 6f 6e 73 0d 7b 24 |ear func|tions.{$|
|00003130| 61 3d 30 24 29 2e 20 41 | 73 20 24 50 24 20 6d 6f |a=0$). A|s $P$ mo|
|00003140| 76 65 73 20 74 6f 20 74 | 68 65 20 6c 65 66 74 20 |ves to t|he left |
|00003150| 6f 66 20 74 68 65 20 72 | 61 6e 67 65 20 6c 69 6e |of the r|ange lin|
|00003160| 65 2c 20 77 65 20 67 65 | 74 0d 74 68 65 20 7b 5c |e, we ge|t.the {\|
|00003170| 69 74 20 64 65 63 72 65 | 61 73 69 6e 67 7d 20 6c |it decre|asing} l|
|00003180| 69 6e 65 61 72 20 66 75 | 6e 63 74 69 6f 6e 73 20 |inear fu|nctions |
|00003190| 28 24 61 20 3c 20 30 24 | 7d 2c 20 77 69 74 68 20 |($a < 0$|}, with |
|000031a0| 24 50 24 0d 68 61 6c 66 | 77 61 79 20 62 65 74 77 |$P$.half|way betw|
|000031b0| 65 65 6e 20 72 61 6e 67 | 65 20 61 6e 64 20 64 6f |een rang|e and do|
|000031c0| 6d 61 69 6e 20 63 6f 72 | 72 65 73 70 6f 6e 64 69 |main cor|respondi|
|000031d0| 6e 67 20 74 6f 20 24 61 | 3d 2d 31 24 2e 20 24 50 |ng to $a|=-1$. $P|
|000031e0| 24 0d 6c 79 69 6e 67 20 | 6f 6e 20 74 68 65 20 64 |$.lying |on the d|
|000031f0| 6f 6d 61 69 6e 20 6c 69 | 6e 65 20 69 73 2c 20 6f |omain li|ne is, o|
|00003200| 66 20 63 6f 75 72 73 65 | 2c 20 61 20 64 69 73 63 |f course|, a disc|
|00003210| 6f 6e 74 69 6e 75 69 74 | 79 2e 20 41 73 20 50 0d |ontinuit|y. As P.|
|00003220| 6d 6f 76 65 73 20 74 6f | 20 74 68 65 20 6c 65 66 |moves to| the lef|
|00003230| 74 20 6f 66 20 74 68 65 | 20 64 6f 6d 61 69 6e 20 |t of the| domain |
|00003240| 6c 69 6e 65 20 77 65 20 | 67 65 74 20 74 68 65 20 |line we |get the |
|00003250| 72 65 6d 61 69 6e 69 6e | 67 0d 70 6f 73 69 74 69 |remainin|g.positi|
|00003260| 76 65 20 76 61 6c 75 65 | 73 20 6f 66 20 24 61 24 |ve value|s of $a$|
|00003270| 3a 20 24 61 20 3e 20 31 | 24 2e 20 54 68 65 20 76 |: $a > 1|$. The v|
|00003280| 61 6c 75 65 20 24 61 3d | 31 24 20 63 6f 72 72 65 |alue $a=|1$ corre|
|00003290| 73 70 6f 6e 64 73 0d 74 | 6f 20 74 68 65 20 60 60 |sponds.t|o the ``|
|000032a0| 70 6f 69 6e 74 20 61 74 | 20 24 5c 69 6e 66 74 79 |point at| $\infty|
|000032b0| 24 27 27 20 73 69 6e 63 | 65 2c 20 66 6f 72 20 73 |$'' sinc|e, for s|
|000032c0| 75 63 68 20 6c 69 6e 65 | 61 72 20 66 75 6e 63 74 |uch line|ar funct|
|000032d0| 69 6f 6e 73 2c 0d 74 68 | 65 20 6d 61 70 70 69 6e |ions,.th|e mappin|
|000032e0| 67 20 6c 69 6e 65 73 20 | 61 72 65 20 70 61 72 61 |g lines |are para|
|000032f0| 6c 6c 65 6c 2e 0d 0d 46 | 6f 72 20 66 75 6e 63 74 |llel...F|or funct|
|00003300| 69 6f 6e 73 20 69 6e 20 | 67 65 6e 65 72 61 6c 2c |ions in |general,|
|00003310| 20 74 68 65 20 64 69 76 | 65 72 67 65 6e 63 65 20 | the div|ergence |
|00003320| 6f 72 20 63 6f 6e 76 65 | 72 67 65 6e 63 65 20 6f |or conve|rgence o|
|00003330| 66 20 74 68 65 0d 6d 61 | 70 70 69 6e 67 20 6c 69 |f the.ma|pping li|
|00003340| 6e 65 73 20 66 6f 72 20 | 6e 65 61 72 62 79 20 64 |nes for |nearby d|
|00003350| 6f 6d 61 69 6e 20 70 6f | 69 6e 74 73 20 72 65 70 |omain po|ints rep|
|00003360| 72 65 73 65 6e 74 73 20 | 74 68 65 20 6c 6f 63 61 |resents |the loca|
|00003370| 6c 0d 64 69 6c 61 74 69 | 6f 6e 20 6f 66 20 74 68 |l.dilati|on of th|
|00003380| 65 20 66 75 6e 63 74 69 | 6f 6e 2e 20 52 65 70 72 |e functi|on. Repr|
|00003390| 65 73 65 6e 74 69 6e 67 | 20 74 68 69 73 20 61 73 |esenting| this as|
|000033a0| 20 74 68 65 20 72 61 74 | 69 6f 20 6f 66 0d 6f 75 | the rat|io of.ou|
|000033b0| 74 70 75 74 20 64 69 73 | 70 6c 61 63 65 6d 65 6e |tput dis|placemen|
|000033c0| 74 73 20 74 6f 20 69 6e | 70 75 74 20 64 69 73 70 |ts to in|put disp|
|000033d0| 6c 61 63 65 6d 65 6e 74 | 73 20 67 69 76 65 73 20 |lacement|s gives |
|000033e0| 61 6e 20 61 76 65 72 61 | 67 65 0d 72 61 74 65 20 |an avera|ge.rate |
|000033f0| 6f 66 20 63 68 61 6e 67 | 65 2e 20 54 68 65 20 6c |of chang|e. The l|
|00003400| 69 6d 69 74 20 6f 66 20 | 74 68 65 73 65 20 64 69 |imit of |these di|
|00003410| 6c 61 74 69 6f 6e 73 20 | 74 68 65 6e 20 72 65 70 |lations |then rep|
|00003420| 72 65 73 65 6e 74 73 0d | 74 68 65 20 64 65 72 69 |resents.|the deri|
|00003430| 76 61 74 69 76 65 2e 20 | 44 69 66 66 65 72 65 6e |vative. |Differen|
|00003440| 74 69 61 62 6c 65 20 66 | 75 6e 63 74 69 6f 6e 73 |tiable f|unctions|
|00003450| 20 62 65 69 6e 67 20 6c | 6f 63 61 6c 6c 79 20 6c | being l|ocally l|
|00003460| 69 6e 65 61 72 2c 0d 74 | 68 65 79 20 65 78 68 69 |inear,.t|hey exhi|
|00003470| 62 69 74 20 74 68 65 20 | 62 65 68 61 76 69 6f 72 |bit the |behavior|
|00003480| 20 6f 66 20 6c 69 6e 65 | 61 72 20 66 75 6e 63 74 | of line|ar funct|
|00003490| 69 6f 6e 20 6a 75 73 74 | 20 64 65 73 63 72 69 62 |ion just| describ|
|000034a0| 65 64 0d 61 66 74 65 72 | 20 72 65 70 65 61 74 65 |ed.after| repeate|
|000034b0| 64 20 7a 6f 6f 6d 69 6e | 67 2e 0d 0d 53 6f 6d 65 |d zoomin|g...Some|
|000034c0| 20 6f 66 20 74 68 65 73 | 65 20 70 72 6f 70 65 72 | of thes|e proper|
|000034d0| 74 69 65 73 20 6f 66 20 | 4d 61 70 70 69 6e 67 20 |ties of |Mapping |
|000034e0| 44 69 61 67 72 61 6d 73 | 20 68 61 76 65 20 62 65 |Diagrams| have be|
|000034f0| 65 6e 0d 64 65 73 63 72 | 69 62 65 64 20 69 6e 20 |en.descr|ibed in |
|00003500| 52 69 63 68 6d 6f 6e 64 | 20 5c 72 65 66 7b 31 31 |Richmond| \ref{11|
|00003510| 7d 20 61 6e 64 20 42 72 | 69 65 73 6b 65 20 5c 72 |} and Br|ieske \r|
|00003520| 65 66 7b 33 7d 2e 0d 4d | 6f 72 65 20 72 65 63 65 |ef{3}..M|ore rece|
|00003530| 6e 74 6c 79 2c 20 47 6f | 6c 64 65 6e 62 65 72 67 |ntly, Go|ldenberg|
|00003540| 20 65 74 2e 7e 61 6c 2e | 7e 28 5c 72 65 66 7b 37 | et.~al.|~(\ref{7|
|00003550| 7d 29 20 68 61 76 65 20 | 75 73 65 64 0d 61 20 76 |}) have |used.a v|
|00003560| 61 72 69 61 74 69 6f 6e | 20 6f 66 20 74 68 69 73 |ariation| of this|
|00003570| 20 69 64 65 61 2c 20 69 | 6d 70 6c 65 6d 65 6e 74 | idea, i|mplement|
|00003580| 65 64 20 6f 6e 20 61 20 | 63 6f 6d 70 75 74 65 72 |ed on a |computer|
|00003590| 2c 20 74 6f 0d 65 78 61 | 6d 69 6e 65 20 68 6f 77 |, to.exa|mine how|
|000035a0| 20 73 74 75 64 65 6e 74 | 73 20 63 61 6e 20 76 69 | student|s can vi|
|000035b0| 73 75 61 6c 69 7a 65 20 | 74 68 65 20 64 65 70 65 |sualize |the depe|
|000035c0| 6e 64 65 6e 63 65 20 6f | 66 20 6f 6e 65 0d 76 61 |ndence o|f one.va|
|000035d0| 72 69 61 62 6c 65 20 6f | 6e 20 61 6e 6f 74 68 65 |riable o|n anothe|
|000035e0| 72 2e 20 54 68 65 73 65 | 20 61 75 74 68 6f 72 73 |r. These| authors|
|000035f0| 20 61 6c 6c 20 75 73 65 | 64 20 70 61 72 61 6c 6c | all use|d parall|
|00003600| 65 6c 20 7b 5c 69 74 0d | 68 6f 72 69 7a 6f 6e 74 |el {\it.|horizont|
|00003610| 61 6c 7d 20 6c 69 6e 65 | 73 20 74 6f 20 72 65 70 |al} line|s to rep|
|00003620| 72 65 73 65 6e 74 20 74 | 68 65 20 64 6f 6d 61 69 |resent t|he domai|
|00003630| 6e 20 61 6e 64 20 72 61 | 6e 67 65 2e 0d 53 75 62 |n and ra|nge..Sub|
|00003640| 73 65 71 75 65 6e 74 20 | 74 65 73 74 69 6e 67 20 |sequent |testing |
|00003650| 6f 6e 20 73 74 75 64 65 | 6e 74 73 20 73 65 65 6d |on stude|nts seem|
|00003660| 65 64 20 74 6f 20 69 6e | 64 69 63 61 74 65 20 74 |ed to in|dicate t|
|00003670| 68 61 74 20 64 72 61 77 | 69 6e 67 0d 61 72 72 6f |hat draw|ing.arro|
|00003680| 77 73 20 66 72 6f 6d 20 | 6c 65 66 74 20 74 6f 20 |ws from |left to |
|00003690| 72 69 67 68 74 20 62 65 | 74 77 65 65 6e 20 74 77 |right be|tween tw|
|000036a0| 6f 20 76 65 72 74 69 63 | 61 6c 20 6c 69 6e 65 73 |o vertic|al lines|
|000036b0| 20 69 73 20 61 20 6d 6f | 72 65 0d 6e 61 74 75 72 | is a mo|re.natur|
|000036c0| 61 6c 20 73 65 74 75 70 | 2e 20 46 6c 61 73 68 6d |al setup|. Flashm|
|000036d0| 61 6e 20 6d 61 6b 65 73 | 20 65 78 74 65 6e 73 69 |an makes| extensi|
|000036e0| 76 65 20 75 73 65 20 6f | 66 20 74 68 69 73 20 6b |ve use o|f this k|
|000036f0| 69 6e 64 20 6f 66 0d 6d | 61 70 70 69 6e 67 20 64 |ind of.m|apping d|
|00003700| 69 61 67 72 61 6d 20 69 | 6e 20 68 69 73 20 66 6f |iagram i|n his fo|
|00003710| 72 74 68 63 6f 6d 69 6e | 67 20 63 61 6c 63 75 6c |rthcomin|g calcul|
|00003720| 75 73 20 62 6f 6f 6b 20 | 5c 72 65 66 7b 36 7d 2e |us book |\ref{6}.|
|00003730| 0d 5c 62 69 67 73 6b 69 | 70 0d 0d 5c 62 65 67 69 |.\bigski|p..\begi|
|00003740| 6e 73 65 63 74 69 6f 6e | 7b 54 68 65 20 44 79 6e |nsection|{The Dyn|
|00003750| 61 6d 69 63 20 46 75 6e | 63 74 69 6f 6e 20 56 69 |amic Fun|ction Vi|
|00003760| 73 75 61 6c 69 7a 65 72 | 7d 0d 0d 41 66 74 65 72 |sualizer|}..After|
|00003770| 20 75 73 69 6e 67 20 6d | 61 70 70 69 6e 67 20 64 | using m|apping d|
|00003780| 69 61 67 72 61 6d 73 20 | 66 6f 72 20 61 20 77 68 |iagrams |for a wh|
|00003790| 69 6c 65 2c 20 69 74 20 | 6f 63 63 75 72 72 65 64 |ile, it |occurred|
|000037a0| 20 74 6f 20 6d 65 0d 74 | 68 61 74 20 74 68 65 72 | to me.t|hat ther|
|000037b0| 65 20 77 61 73 20 65 76 | 65 6e 20 6d 6f 72 65 20 |e was ev|en more |
|000037c0| 6f 6e 65 20 63 6f 75 6c | 64 20 64 6f 20 74 6f 20 |one coul|d do to |
|000037d0| 65 6d 70 68 61 73 69 7a | 65 20 74 68 65 20 64 79 |emphasiz|e the dy|
|000037e0| 6e 61 6d 69 63 0d 6e 61 | 74 75 72 65 20 6f 66 20 |namic.na|ture of |
|000037f0| 66 75 6e 63 74 69 6f 6e | 73 2e 20 4f 76 65 72 20 |function|s. Over |
|00003800| 74 68 65 20 70 61 73 74 | 20 79 65 61 72 2c 20 48 |the past| year, H|
|00003810| 2e 7e 48 6f 68 6e 0d 61 | 6e 64 20 49 20 68 61 76 |.~Hohn.a|nd I hav|
|00003820| 65 20 63 6f 6c 6c 61 62 | 6f 72 61 74 65 64 20 6f |e collab|orated o|
|00003830| 6e 20 61 20 73 6f 66 74 | 77 61 72 65 20 69 6d 70 |n a soft|ware imp|
|00003840| 6c 65 6d 65 6e 74 61 74 | 69 6f 6e 0d 6f 66 20 73 |lementat|ion.of s|
|00003850| 74 61 6e 64 61 72 64 20 | 6d 61 70 70 69 6e 67 20 |tandard |mapping |
|00003860| 64 69 61 67 72 61 6d 73 | 2c 20 77 68 69 6c 65 20 |diagrams|, while |
|00003870| 61 6c 73 6f 20 61 64 64 | 69 6e 67 20 73 65 76 65 |also add|ing seve|
|00003880| 72 61 6c 20 6e 65 77 0d | 66 65 61 74 75 72 65 73 |ral new.|features|
|00003890| 2c 20 69 6e 63 6c 75 64 | 69 6e 67 20 61 75 74 6f |, includ|ing auto|
|000038a0| 6d 61 74 69 63 20 7a 6f | 6f 6d 2c 20 76 61 72 69 |matic zo|om, vari|
|000038b0| 61 62 6c 65 20 73 63 61 | 6c 69 6e 67 20 6f 66 20 |able sca|ling of |
|000038c0| 74 68 65 0d 64 6f 6d 61 | 69 6e 20 61 6e 64 20 72 |the.doma|in and r|
|000038d0| 61 6e 67 65 20 61 6e 64 | 2c 20 65 73 70 65 63 69 |ange and|, especi|
|000038e0| 61 6c 6c 79 2c 20 61 6e | 20 7b 5c 69 74 20 61 6e |ally, an| {\it an|
|000038f0| 69 6d 61 74 69 6f 6e 20 | 6d 6f 64 65 7d 2e 0d 0d |imation |mode}...|
|00003900| 49 6e 20 61 6e 69 6d 61 | 74 69 6f 6e 20 6d 6f 64 |In anima|tion mod|
|00003910| 65 2c 20 74 68 65 20 64 | 6f 6d 61 69 6e 20 70 6f |e, the d|omain po|
|00003920| 69 6e 74 20 24 50 24 20 | 6d 6f 76 65 73 20 74 6f |int $P$ |moves to|
|00003930| 77 61 72 64 20 69 74 73 | 0d 69 6d 61 67 65 20 24 |ward its|.image $|
|00003940| 66 28 50 29 24 2c 20 66 | 72 6f 6d 20 6c 65 66 74 |f(P)$, f|rom left|
|00003950| 20 74 6f 20 72 69 67 68 | 74 2c 20 61 74 20 61 20 | to righ|t, at a |
|00003960| 68 6f 72 69 7a 6f 6e 74 | 61 6c 20 73 70 65 65 64 |horizont|al speed|
|00003970| 20 24 6b 20 2b 0d 4b 5c | 7c 66 27 28 50 29 5c 7c | $k +.K\||f'(P)\||
|00003980| 24 2e 20 54 68 65 20 63 | 6f 6e 73 74 61 6e 74 73 |$. The c|onstants|
|00003990| 20 24 6b 24 20 61 6e 64 | 20 24 4b 24 20 61 72 65 | $k$ and| $K$ are|
|000039a0| 20 61 64 6a 75 73 74 61 | 62 6c 65 2c 20 61 6e 64 | adjusta|ble, and|
|000039b0| 0d 72 65 70 72 65 73 65 | 6e 74 2c 20 72 65 73 70 |.represe|nt, resp|
|000039c0| 65 63 74 69 76 65 6c 79 | 2c 20 61 20 7b 5c 69 74 |ectively|, a {\it|
|000039d0| 20 6d 69 6e 69 6d 61 6c | 7d 20 73 70 65 65 64 20 | minimal|} speed |
|000039e0| 61 6e 64 20 61 20 7b 5c | 69 74 0d 73 70 72 65 61 |and a {\|it.sprea|
|000039f0| 64 7d 20 62 65 74 77 65 | 65 6e 20 74 68 65 20 6d |d} betwe|en the m|
|00003a00| 69 6e 69 6d 61 6c 20 61 | 6e 64 20 6d 61 78 69 6d |inimal a|nd maxim|
|00003a10| 61 6c 20 73 70 65 65 64 | 73 2e 20 52 6f 75 67 68 |al speed|s. Rough|
|00003a20| 6c 79 0d 73 70 65 61 6b | 69 6e 67 20 28 6e 65 67 |ly.speak|ing (neg|
|00003a30| 6c 65 63 74 69 6e 67 20 | 74 68 65 20 6d 69 6e 69 |lecting |the mini|
|00003a40| 6d 61 6c 20 73 70 65 65 | 64 29 2c 20 61 20 70 6f |mal spee|d), a po|
|00003a50| 69 6e 74 20 6d 6f 76 65 | 73 20 74 6f 77 61 72 64 |int move|s toward|
|00003a60| 0d 69 74 73 20 69 6d 61 | 67 65 20 61 74 20 61 20 |.its ima|ge at a |
|00003a70| 72 61 74 65 20 70 72 6f | 70 6f 72 74 69 6f 6e 61 |rate pro|portiona|
|00003a80| 6c 20 74 6f 20 74 68 65 | 20 61 62 73 6f 6c 75 74 |l to the| absolut|
|00003a90| 65 20 76 61 6c 75 65 20 | 6f 66 20 74 68 65 0d 64 |e value |of the.d|
|00003aa0| 65 72 69 76 61 74 69 76 | 65 20 61 74 20 74 68 65 |erivativ|e at the|
|00003ab0| 20 70 6f 69 6e 74 2e 20 | 46 75 72 74 68 65 72 6d | point. |Furtherm|
|00003ac0| 6f 72 65 2c 20 69 6e 20 | 61 6e 69 6d 61 74 69 6f |ore, in |animatio|
|00003ad0| 6e 20 6d 6f 64 65 2c 20 | 74 68 65 0d 77 68 6f 6c |n mode, |the.whol|
|00003ae0| 65 20 64 6f 6d 61 69 6e | 20 69 6e 74 65 72 76 61 |e domain| interva|
|00003af0| 6c 20 63 61 6e 20 62 65 | 20 6d 61 64 65 20 74 6f |l can be| made to|
|00003b00| 20 6d 6f 76 65 2c 20 6e | 6f 74 20 6a 75 73 74 20 | move, n|ot just |
|00003b10| 61 20 66 65 77 0d 69 6e | 64 69 76 69 64 75 61 6c |a few.in|dividual|
|00003b20| 20 70 6f 69 6e 74 73 2e | 20 46 69 6e 61 6c 6c 79 | points.| Finally|
|00003b30| 2c 20 66 6f 72 20 63 6c | 61 72 69 74 79 2c 20 70 |, for cl|arity, p|
|00003b40| 6f 69 6e 74 73 20 61 72 | 65 0d 63 6f 6c 6f 72 2d |oints ar|e.color-|
|00003b50| 63 6f 64 65 64 2c 20 64 | 65 70 65 6e 64 69 6e 67 |coded, d|epending|
|00003b60| 20 6f 6e 20 77 68 65 74 | 68 65 72 20 74 68 65 20 | on whet|her the |
|00003b70| 64 65 72 69 76 61 74 69 | 76 65 20 69 73 20 70 6f |derivati|ve is po|
|00003b80| 73 69 74 69 76 65 0d 6f | 72 20 6e 65 67 61 74 69 |sitive.o|r negati|
|00003b90| 76 65 2e 0d 0d 54 68 65 | 20 69 6d 61 67 65 73 20 |ve...The| images |
|00003ba0| 70 72 6f 64 75 63 65 64 | 20 62 79 20 74 68 69 73 |produced| by this|
|00003bb0| 20 73 63 68 65 6d 65 20 | 61 72 65 20 73 74 72 69 | scheme |are stri|
|00003bc0| 6b 69 6e 67 20 61 6e 64 | 20 73 68 6f 77 0d 63 68 |king and| show.ch|
|00003bd0| 61 72 61 63 74 65 72 69 | 73 74 69 63 20 66 65 61 |aracteri|stic fea|
|00003be0| 74 75 72 65 73 20 77 68 | 69 63 68 20 6f 6e 65 20 |tures wh|ich one |
|00003bf0| 6c 65 61 72 6e 73 20 62 | 79 20 65 78 70 65 72 69 |learns b|y experi|
|00003c00| 65 6e 63 65 20 74 6f 0d | 72 65 63 6f 67 6e 69 7a |ence to.|recogniz|
|00003c10| 65 20 61 6e 64 20 69 6e | 74 65 72 70 72 65 74 2e |e and in|terpret.|
|00003c20| 20 41 20 76 65 72 62 61 | 6c 20 64 65 73 63 72 69 | A verba|l descri|
|00003c30| 70 74 69 6f 6e 20 63 61 | 6e 20 68 61 72 64 6c 79 |ption ca|n hardly|
|00003c40| 20 62 65 0d 61 64 65 71 | 75 61 74 65 2c 20 62 75 | be.adeq|uate, bu|
|00003c50| 74 20 49 20 77 69 6c 6c | 20 74 72 79 20 74 6f 20 |t I will| try to |
|00003c60| 64 65 73 63 72 69 62 65 | 2c 20 77 69 74 68 20 73 |describe|, with s|
|00003c70| 6f 6d 65 20 64 69 61 67 | 72 61 6d 73 2c 20 73 6f |ome diag|rams, so|
|00003c80| 6d 65 0d 6f 66 20 74 68 | 65 20 74 68 69 6e 67 73 |me.of th|e things|
|00003c90| 20 77 65 20 68 61 76 65 | 20 6f 62 73 65 72 76 65 | we have| observe|
|00003ca0| 64 2e 0d 0d 31 2e 20 4c | 69 6e 65 61 72 20 66 75 |d...1. L|inear fu|
|00003cb0| 6e 63 74 69 6f 6e 73 20 | 61 72 65 20 65 61 73 69 |nctions |are easi|
|00003cc0| 6c 79 20 72 65 63 6f 67 | 6e 69 7a 61 62 6c 65 20 |ly recog|nizable |
|00003cd0| 73 69 6e 63 65 20 74 68 | 65 0d 64 65 72 69 76 61 |since th|e.deriva|
|00003ce0| 74 69 76 65 20 69 73 20 | 63 6f 6e 73 74 61 6e 74 |tive is |constant|
|00003cf0| 3b 20 74 68 75 73 2c 20 | 61 6c 6c 20 70 6f 69 6e |; thus, |all poin|
|00003d00| 74 73 20 6d 6f 76 65 20 | 61 74 20 74 68 65 20 73 |ts move |at the s|
|00003d10| 61 6d 65 0d 73 70 65 65 | 64 2c 20 61 6e 64 20 73 |ame.spee|d, and s|
|00003d20| 6f 20 6f 6e 65 20 6f 62 | 73 65 72 76 65 73 20 61 |o one ob|serves a|
|00003d30| 20 76 65 72 74 69 63 61 | 6c 20 60 60 77 61 76 65 | vertica|l ``wave|
|00003d40| 2d 66 72 6f 6e 74 27 27 | 20 6d 6f 76 69 6e 67 0d |-front''| moving.|
|00003d50| 66 72 6f 6d 20 6c 65 66 | 74 20 74 6f 20 72 69 67 |from lef|t to rig|
|00003d60| 68 74 2e 20 49 66 20 64 | 6f 6d 61 69 6e 20 61 6e |ht. If d|omain an|
|00003d70| 64 20 72 61 6e 67 65 20 | 68 61 76 65 20 74 68 65 |d range |have the|
|00003d80| 20 73 61 6d 65 20 73 63 | 61 6c 65 2c 0d 74 68 65 | same sc|ale,.the|
|00003d90| 6e 20 74 68 65 20 66 72 | 6f 6e 74 20 73 74 72 65 |n the fr|ont stre|
|00003da0| 74 63 68 65 73 20 6f 72 | 20 63 6f 6e 74 72 61 63 |tches or| contrac|
|00003db0| 74 73 20 76 65 72 74 69 | 63 61 6c 6c 79 20 64 65 |ts verti|cally de|
|00003dc0| 70 65 6e 64 69 6e 67 20 | 6f 6e 0d 77 68 65 74 68 |pending |on.wheth|
|00003dd0| 65 72 20 74 68 65 20 64 | 65 72 69 76 61 74 69 76 |er the d|erivativ|
|00003de0| 65 20 69 73 20 67 72 65 | 61 74 65 72 20 6f 72 20 |e is gre|ater or |
|00003df0| 6c 65 73 73 20 74 68 61 | 6e 20 31 20 69 6e 20 61 |less tha|n 1 in a|
|00003e00| 62 73 6f 6c 75 74 65 0d | 76 61 6c 75 65 2e 20 49 |bsolute.|value. I|
|00003e10| 66 20 74 68 65 20 64 65 | 72 69 76 61 74 69 76 65 |f the de|rivative|
|00003e20| 20 69 73 20 6e 65 67 61 | 74 69 76 65 2c 20 74 68 | is nega|tive, th|
|00003e30| 65 6e 20 74 68 65 20 77 | 61 76 65 20 66 72 6f 6e |en the w|ave fron|
|00003e40| 74 0d 66 6c 69 70 73 20 | 6f 76 65 72 20 69 74 73 |t.flips |over its|
|00003e50| 65 6c 66 20 76 65 72 74 | 69 63 61 6c 6c 79 20 73 |elf vert|ically s|
|00003e60| 69 6e 63 65 20 6c 6f 77 | 65 72 20 70 6f 69 6e 74 |ince low|er point|
|00003e70| 73 20 6d 75 73 74 20 6d | 6f 76 65 20 75 70 0d 61 |s must m|ove up.a|
|00003e80| 6e 64 20 68 69 67 68 65 | 72 20 70 6f 69 6e 74 73 |nd highe|r points|
|00003e90| 20 6d 6f 76 65 20 64 6f | 77 6e 2e 20 54 68 69 73 | move do|wn. This|
|00003ea0| 20 68 61 70 70 65 6e 73 | 20 61 74 20 74 68 65 20 | happens| at the |
|00003eb0| 66 6f 63 61 6c 20 70 6f | 69 6e 74 2c 0d 77 68 69 |focal po|int,.whi|
|00003ec0| 63 68 20 6c 69 65 73 20 | 62 65 74 77 65 65 6e 20 |ch lies |between |
|00003ed0| 74 68 65 20 64 6f 6d 61 | 69 6e 20 61 6e 64 20 72 |the doma|in and r|
|00003ee0| 61 6e 67 65 20 6c 69 6e | 65 73 2e 20 48 6f 77 65 |ange lin|es. Howe|
|00003ef0| 76 65 72 2c 20 74 68 69 | 73 0d 66 6c 69 70 20 69 |ver, thi|s.flip i|
|00003f00| 73 20 69 6e 76 69 73 69 | 62 6c 65 20 73 69 6e 63 |s invisi|ble sinc|
|00003f10| 65 20 74 68 65 20 66 72 | 6f 6e 74 20 69 73 20 76 |e the fr|ont is v|
|00003f20| 65 72 74 69 63 61 6c 2e | 20 49 74 27 73 20 6f 6e |ertical.| It's on|
|00003f30| 6c 79 20 77 68 65 6e 0d | 6f 6e 65 20 6c 6f 6f 6b |ly when.|one look|
|00003f40| 73 20 61 74 20 6e 6f 6e | 2d 6c 69 6e 65 61 72 20 |s at non|-linear |
|00003f50| 66 75 6e 63 74 69 6f 6e | 73 20 74 68 61 74 20 74 |function|s that t|
|00003f60| 68 69 73 20 66 6c 69 70 | 70 69 6e 67 20 62 65 63 |his flip|ping bec|
|00003f70| 6f 6d 65 73 0d 61 70 70 | 61 72 65 6e 74 20 61 6e |omes.app|arent an|
|00003f80| 64 20 73 74 72 69 6b 69 | 6e 67 2e 0d 0d 32 2e 20 |d striki|ng...2. |
|00003f90| 4d 6f 6e 6f 74 6f 6e 65 | 20 69 6e 63 72 65 61 73 |Monotone| increas|
|00003fa0| 69 6e 67 20 66 75 6e 63 | 74 69 6f 6e 73 20 73 68 |ing func|tions sh|
|00003fb0| 6f 77 20 20 63 75 72 76 | 79 20 77 61 76 65 66 72 |ow curv|y wavefr|
|00003fc0| 6f 6e 74 73 0d 77 68 69 | 63 68 20 62 75 6c 67 65 |onts.whi|ch bulge|
|00003fd0| 20 74 6f 77 61 72 64 20 | 74 68 65 20 72 69 67 68 | toward |the righ|
|00003fe0| 74 20 77 68 65 72 65 20 | 70 6f 69 6e 74 73 20 68 |t where |points h|
|00003ff0| 61 76 65 20 6c 61 72 67 | 65 72 0d 64 65 72 69 76 |ave larg|er.deriv|
|00004000| 61 74 69 76 65 73 2c 20 | 61 6e 64 20 74 6f 77 61 |atives, |and towa|
|00004010| 72 64 20 74 68 65 20 6c | 65 66 74 20 66 6f 72 20 |rd the l|eft for |
|00004020| 73 6d 61 6c 6c 65 72 20 | 64 65 72 69 76 61 74 69 |smaller |derivati|
|00004030| 76 65 73 2e 20 54 68 65 | 0d 74 69 70 73 20 6f 66 |ves. The|.tips of|
|00004040| 20 74 68 65 20 62 75 6c | 67 65 73 20 72 65 70 72 | the bul|ges repr|
|00004050| 65 73 65 6e 74 20 6d 61 | 78 69 6d 61 20 6f 72 20 |esent ma|xima or |
|00004060| 6d 69 6e 69 6d 61 20 6f | 66 20 74 68 65 0d 64 65 |minima o|f the.de|
|00004070| 72 69 76 61 74 69 76 65 | 2c 20 68 65 6e 63 65 20 |rivative|, hence |
|00004080| 7a 65 72 6f 73 20 6f 66 | 20 74 68 65 20 73 65 63 |zeros of| the sec|
|00004090| 6f 6e 64 20 64 65 72 69 | 76 61 74 69 76 65 2e 20 |ond deri|vative. |
|000040a0| 28 52 65 76 65 72 73 69 | 6e 67 0d 74 68 65 20 61 |(Reversi|ng.the a|
|000040b0| 6e 69 6d 61 74 69 6f 6e | 20 73 68 6f 77 73 20 74 |nimation| shows t|
|000040c0| 68 65 20 62 65 68 61 76 | 69 6f 72 20 6f 66 20 74 |he behav|ior of t|
|000040d0| 68 65 20 69 6e 76 65 72 | 73 65 20 66 75 6e 63 74 |he inver|se funct|
|000040e0| 69 6f 6e 2e 29 20 54 68 | 65 0d 64 69 61 67 72 61 |ion.) Th|e.diagra|
|000040f0| 6d 73 20 69 6e 20 46 69 | 67 75 72 65 20 32 20 73 |ms in Fi|gure 2 s|
|00004100| 68 6f 77 20 73 6f 6d 65 | 20 73 6e 61 70 73 68 6f |how some| snapsho|
|00004110| 74 73 20 6f 66 20 74 68 | 65 0d 61 6e 69 6d 61 74 |ts of th|e.animat|
|00004120| 69 6f 6e 20 6f 66 20 74 | 68 65 20 66 75 6e 63 74 |ion of t|he funct|
|00004130| 69 6f 6e 73 20 24 78 5c | 6d 61 70 73 74 6f 28 31 |ions $x\|mapsto(1|
|00004140| 32 78 2b 78 5e 33 29 2f | 31 33 24 20 61 6e 64 0d |2x+x^3)/|13$ and.|
|00004150| 24 78 5c 6d 61 70 73 74 | 6f 28 31 32 78 2d 78 5e |$x\mapst|o(12x-x^|
|00004160| 33 29 2f 31 33 24 20 6f | 6e 20 74 68 65 20 69 6e |3)/13$ o|n the in|
|00004170| 74 65 72 76 61 6c 20 24 | 5b 2d 31 2c 31 5d 24 2e |terval $|[-1,1]$.|
|00004180| 0d 0d 0d 33 2e 20 4d 6f | 6e 6f 74 6f 6e 65 20 64 |...3. Mo|notone d|
|00004190| 65 63 72 65 61 73 69 6e | 67 20 66 75 6e 63 74 69 |ecreasin|g functi|
|000041a0| 6f 6e 73 20 61 72 65 20 | 65 76 65 6e 20 6d 6f 72 |ons are |even mor|
|000041b0| 65 20 69 6e 74 65 72 65 | 73 74 69 6e 67 2c 0d 73 |e intere|sting,.s|
|000041c0| 69 6e 63 65 20 74 68 65 | 20 6d 61 70 70 69 6e 67 |ince the| mapping|
|000041d0| 20 6c 69 6e 65 73 20 66 | 6f 72 20 73 6d 61 6c 6c | lines f|or small|
|000041e0| 65 72 20 61 72 67 75 6d | 65 6e 74 73 20 6d 75 73 |er argum|ents mus|
|000041f0| 74 20 63 72 6f 73 73 20 | 74 68 65 0d 6d 61 70 70 |t cross |the.mapp|
|00004200| 69 6e 67 20 6c 69 6e 65 | 73 20 66 6f 72 20 6c 61 |ing line|s for la|
|00004210| 72 67 65 72 20 6f 6e 65 | 73 2c 20 61 73 20 73 65 |rger one|s, as se|
|00004220| 65 6e 20 69 6e 20 46 69 | 67 75 72 65 20 31 2e 20 |en in Fi|gure 1. |
|00004230| 49 66 20 74 68 65 0d 64 | 65 72 69 76 61 74 69 76 |If the.d|erivativ|
|00004240| 65 20 69 73 20 69 74 73 | 65 6c 66 20 6d 6f 6e 6f |e is its|elf mono|
|00004250| 74 6f 6e 65 2c 20 74 68 | 65 6e 20 74 68 69 73 20 |tone, th|en this |
|00004260| 6d 6f 74 69 6f 6e 20 69 | 73 0d 61 63 63 6f 6d 70 |motion i|s.accomp|
|00004270| 6c 69 73 68 65 64 20 77 | 69 74 68 6f 75 74 20 74 |lished w|ithout t|
|00004280| 68 65 20 77 61 76 65 66 | 72 6f 6e 74 20 63 72 6f |he wavef|ront cro|
|00004290| 73 73 69 6e 67 20 69 74 | 73 65 6c 66 2c 20 73 69 |ssing it|self, si|
|000042a0| 6e 63 65 2c 20 66 6f 72 | 0d 6d 6f 6e 6f 74 6f 6e |nce, for|.monoton|
|000042b0| 65 20 69 6e 63 72 65 61 | 73 69 6e 67 20 64 65 72 |e increa|sing der|
|000042c0| 69 76 61 74 69 76 65 2c | 20 70 6f 69 6e 74 73 20 |ivative,| points |
|000042d0| 73 74 61 72 74 69 6e 67 | 20 68 69 67 68 65 72 20 |starting| higher |
|000042e0| 75 70 20 6f 6e 0d 74 68 | 65 20 64 6f 6d 61 69 6e |up on.th|e domain|
|000042f0| 20 6c 69 6e 65 20 6d 6f | 76 65 20 61 74 20 73 74 | line mo|ve at st|
|00004300| 72 69 63 74 6c 79 20 67 | 72 65 61 74 65 72 20 73 |rictly g|reater s|
|00004310| 70 65 65 64 73 20 74 68 | 61 6e 20 6f 6e 65 73 0d |peeds th|an ones.|
|00004320| 73 74 61 72 74 69 6e 67 | 20 6c 6f 77 65 72 20 64 |starting| lower d|
|00004330| 6f 77 6e 2e 20 54 68 75 | 73 2c 20 74 68 65 79 20 |own. Thu|s, they |
|00004340| 70 61 73 73 20 74 68 72 | 6f 75 67 68 20 74 68 65 |pass thr|ough the|
|00004350| 20 63 72 6f 73 73 69 6e | 67 20 6f 66 0d 74 68 65 | crossin|g of.the|
|00004360| 20 6d 61 70 70 69 6e 67 | 20 6c 69 6e 65 73 20 73 | mapping| lines s|
|00004370| 6f 6f 6e 65 72 20 74 68 | 61 6e 20 74 68 65 20 6c |ooner th|an the l|
|00004380| 6f 77 65 72 20 6f 6e 65 | 73 2e 20 48 6f 77 65 76 |ower one|s. Howev|
|00004390| 65 72 2c 20 69 66 20 74 | 68 65 0d 64 65 72 69 76 |er, if t|he.deriv|
|000043a0| 61 74 69 76 65 20 68 61 | 73 20 61 20 6d 61 78 69 |ative ha|s a maxi|
|000043b0| 6d 75 6d 20 6f 72 20 6d | 69 6e 69 6d 75 6d 2c 20 |mum or m|inimum, |
|000043c0| 74 68 65 6e 20 74 68 65 | 72 65 20 69 73 20 61 20 |then the|re is a |
|000043d0| 6c 65 61 64 69 6e 67 0d | 6f 72 20 74 72 61 69 6c |leading.|or trail|
|000043e0| 69 6e 67 20 70 6f 69 6e | 74 2c 20 61 6e 64 20 74 |ing poin|t, and t|
|000043f0| 68 6f 73 65 20 70 6f 69 | 6e 74 73 20 73 74 61 72 |hose poi|nts star|
|00004400| 74 69 6e 67 20 61 62 6f | 76 65 20 6f 72 20 62 65 |ting abo|ve or be|
|00004410| 6c 6f 77 20 69 74 20 6d | 75 73 74 0d 6d 6f 76 65 |low it m|ust.move|
|00004420| 20 69 6e 20 6f 70 70 6f | 73 69 74 65 20 76 65 72 | in oppo|site ver|
|00004430| 74 69 63 61 6c 20 64 69 | 72 65 63 74 69 6f 6e 73 |tical di|rections|
|00004440| 20 61 73 20 74 68 65 79 | 20 6d 6f 76 65 20 72 69 | as they| move ri|
|00004450| 67 68 74 77 61 72 64 2e | 0d 45 76 65 6e 74 75 61 |ghtward.|.Eventua|
|00004460| 6c 6c 79 2c 20 74 68 65 | 79 20 6d 75 73 74 20 63 |lly, the|y must c|
|00004470| 72 6f 73 73 20 61 74 20 | 74 68 65 20 63 72 6f 73 |ross at |the cros|
|00004480| 73 69 6e 67 20 70 6f 69 | 6e 74 20 6f 66 20 74 68 |sing poi|nt of th|
|00004490| 65 0d 6d 61 70 70 69 6e | 67 20 6c 69 6e 65 73 2c |e.mappin|g lines,|
|000044a0| 20 66 6f 72 6d 69 6e 67 | 20 74 68 65 20 63 68 61 | forming| the cha|
|000044b0| 72 61 63 74 65 72 69 73 | 74 69 63 20 6c 6f 6f 70 |racteris|tic loop|
|000044c0| 73 20 73 68 6f 77 6e 0d | 69 6e 20 74 68 65 20 73 |s shown.|in the s|
|000044d0| 6e 61 70 73 68 6f 74 20 | 69 6d 61 67 65 73 20 6f |napshot |images o|
|000044e0| 66 20 46 69 67 75 72 65 | 20 33 20 66 6f 72 20 74 |f Figure| 3 for t|
|000044f0| 68 65 20 66 75 6e 63 74 | 69 6f 6e 73 0d 24 78 5c |he funct|ions.$x\|
|00004500| 6d 61 70 73 74 6f 28 78 | 5e 33 2d 31 32 78 29 2f |mapsto(x|^3-12x)/|
|00004510| 31 33 24 20 61 6e 64 20 | 24 78 5c 6d 61 70 73 74 |13$ and |$x\mapst|
|00004520| 6f 28 2d 78 5e 33 2d 31 | 32 78 29 2f 31 33 24 2e |o(-x^3-1|2x)/13$.|
|00004530| 20 28 54 68 65 0d 64 69 | 76 69 73 69 6f 6e 20 62 | (The.di|vision b|
|00004540| 79 20 31 33 20 69 6e 20 | 74 68 65 73 65 20 66 75 |y 13 in |these fu|
|00004550| 6e 63 74 69 6f 6e 73 20 | 69 73 20 74 6f 20 6d 61 |nctions |is to ma|
|00004560| 6b 65 20 74 68 65 20 72 | 61 6e 67 65 20 68 61 76 |ke the r|ange hav|
|00004570| 65 0d 74 68 65 20 73 61 | 6d 65 20 73 63 61 6c 65 |e.the sa|me scale|
|00004580| 20 61 73 20 74 68 65 20 | 64 6f 6d 61 69 6e 20 69 | as the |domain i|
|00004590| 6e 74 65 72 76 61 6c 20 | 24 5b 2d 31 2c 31 5d 24 |nterval |$[-1,1]$|
|000045a0| 2e 29 20 5c 62 69 67 73 | 6b 69 70 0d 0d 5c 32 6c |.) \bigs|kip..\2l|
|000045b0| 69 6e 65 7b 63 75 62 69 | 63 32 2e 64 6d 70 7d 7b |ine{cubi|c2.dmp}{|
|000045c0| 24 78 5c 6d 61 70 73 74 | 6f 28 31 32 78 2b 78 5e |$x\mapst|o(12x+x^|
|000045d0| 33 29 2f 31 33 24 7d 25 | 0d 7b 63 75 62 69 63 34 |3)/13$}%|.{cubic4|
|000045e0| 2e 64 6d 70 7d 7b 24 78 | 5c 6d 61 70 73 74 6f 28 |.dmp}{$x|\mapsto(|
|000045f0| 31 32 78 2d 78 5e 33 29 | 2f 31 33 24 7d 25 0d 5c |12x-x^3)|/13$}%.\|
|00004600| 62 69 67 73 6b 69 70 0d | 5c 63 65 6e 74 65 72 6c |bigskip.|\centerl|
|00004610| 69 6e 65 7b 5c 62 66 20 | 46 69 67 75 72 65 20 32 |ine{\bf |Figure 2|
|00004620| 7d 0d 5c 62 69 67 73 6b | 69 70 0d 0d 5c 32 6c 69 |}.\bigsk|ip..\2li|
|00004630| 6e 65 7b 63 75 62 69 63 | 31 2e 64 6d 70 7d 7b 24 |ne{cubic|1.dmp}{$|
|00004640| 78 5c 6d 61 70 73 74 6f | 28 2d 31 32 78 2b 78 5e |x\mapsto|(-12x+x^|
|00004650| 33 29 2f 31 33 24 7d 0d | 7b 63 75 62 69 63 33 2e |3)/13$}.|{cubic3.|
|00004660| 64 6d 70 7d 7b 24 78 5c | 6d 61 70 73 74 6f 28 2d |dmp}{$x\|mapsto(-|
|00004670| 31 32 78 2d 78 5e 33 29 | 2f 31 33 24 7d 0d 5c 62 |12x-x^3)|/13$}.\b|
|00004680| 69 67 73 6b 69 70 0d 5c | 63 65 6e 74 65 72 6c 69 |igskip.\|centerli|
|00004690| 6e 65 7b 5c 62 66 20 46 | 69 67 75 72 65 20 33 7d |ne{\bf F|igure 3}|
|000046a0| 0d 5c 62 69 67 73 6b 69 | 70 0d 0d 49 6e 20 74 68 |.\bigski|p..In th|
|000046b0| 65 20 63 61 73 65 20 77 | 68 65 72 65 20 74 68 65 |e case w|here the|
|000046c0| 20 66 75 6e 63 74 69 6f | 6e 20 69 73 20 6e 6f 74 | functio|n is not|
|000046d0| 20 6d 6f 6e 6f 74 6f 6e | 65 2c 20 74 68 65 20 56 | monoton|e, the V|
|000046e0| 69 73 75 61 6c 69 7a 65 | 72 0d 63 6f 6c 6f 72 20 |isualize|r.color |
|000046f0| 63 6f 64 65 73 20 70 6f | 69 6e 74 73 20 6f 66 20 |codes po|ints of |
|00004700| 69 6e 63 72 65 61 73 65 | 20 61 6e 64 20 64 65 63 |increase| and dec|
|00004710| 72 65 61 73 65 2e 20 54 | 68 65 20 61 6e 69 6d 61 |rease. T|he anima|
|00004720| 74 69 6f 6e 0d 73 68 6f | 77 73 20 76 69 76 69 64 |tion.sho|ws vivid|
|00004730| 6c 79 20 66 69 72 73 74 | 20 68 6f 77 20 74 68 65 |ly first| how the|
|00004740| 20 6c 61 72 67 65 20 73 | 63 61 6c 65 20 62 65 68 | large s|cale beh|
|00004750| 61 76 69 6f 72 20 63 61 | 6e 20 62 65 20 62 72 6f |avior ca|n be bro|
|00004760| 6b 65 6e 0d 64 6f 77 6e | 20 69 6e 74 6f 20 69 6e |ken.down| into in|
|00004770| 74 65 72 76 61 6c 73 20 | 6f 66 20 6d 6f 6e 6f 74 |tervals |of monot|
|00004780| 6f 6e 69 63 69 74 79 2c | 20 61 6e 64 20 68 6f 77 |onicity,| and how|
|00004790| 20 74 68 65 20 66 75 6e | 63 74 69 6f 6e 0d 62 65 | the fun|ction.be|
|000047a0| 63 6f 6d 65 73 20 61 20 | 73 65 76 65 72 61 6c 2d |comes a |several-|
|000047b0| 66 6f 6c 64 20 63 6f 76 | 65 72 69 6e 67 20 6f 66 |fold cov|ering of|
|000047c0| 20 76 61 72 69 6f 75 73 | 20 73 65 67 6d 65 6e 74 | various| segment|
|000047d0| 73 20 6f 66 20 69 74 73 | 0d 72 61 6e 67 65 2e 20 |s of its|.range. |
|000047e0| 52 65 76 65 72 73 69 6e | 67 20 74 68 65 20 6d 6f |Reversin|g the mo|
|000047f0| 74 69 6f 6e 20 6f 66 20 | 70 6f 69 6e 74 73 20 61 |tion of |points a|
|00004800| 6e 64 20 72 65 73 74 72 | 69 63 74 69 6f 6e 20 6f |nd restr|iction o|
|00004810| 66 20 74 68 65 0d 64 6f | 6d 61 69 6e 20 73 68 6f |f the.do|main sho|
|00004820| 77 73 20 68 6f 77 20 69 | 6e 76 65 72 73 65 73 20 |ws how i|nverses |
|00004830| 63 61 6e 20 6f 62 74 61 | 69 6e 65 64 2e 0d 5c 62 |can obta|ined..\b|
|00004840| 69 67 73 6b 69 70 0d 0d | 5c 62 65 67 69 6e 73 65 |igskip..|\beginse|
|00004850| 63 74 69 6f 6e 7b 4d 61 | 70 70 69 6e 67 20 44 69 |ction{Ma|pping Di|
|00004860| 61 67 72 61 6d 73 3a 20 | 54 65 63 68 6e 69 63 61 |agrams: |Technica|
|00004870| 6c 69 74 69 65 73 7d 0d | 0d 49 6e 20 6f 72 64 65 |lities}.|.In orde|
|00004880| 72 20 74 6f 20 61 6e 61 | 6c 79 7a 65 20 74 68 65 |r to ana|lyze the|
|00004890| 20 56 69 73 75 61 6c 69 | 7a 65 72 20 66 72 6f 6d | Visuali|zer from|
|000048a0| 20 61 20 6d 61 74 68 65 | 6d 61 74 69 63 61 6c 0d | a mathe|matical.|
|000048b0| 73 74 61 6e 64 70 6f 69 | 6e 74 2c 20 77 65 20 6d |standpoi|nt, we m|
|000048c0| 61 6b 65 20 74 68 65 20 | 66 6f 6c 6c 6f 77 69 6e |ake the |followin|
|000048d0| 67 20 63 6f 6e 76 65 6e | 74 69 6f 6e 73 2e 0d 5c |g conven|tions..\|
|000048e0| 6d 65 64 73 6b 69 70 0d | 0d 5c 6e 6f 69 6e 64 65 |medskip.|.\noinde|
|000048f0| 6e 74 5c 71 75 61 64 5c | 62 75 6c 6c 0d 54 68 65 |nt\quad\|bull.The|
|00004900| 20 64 6f 6d 61 69 6e 20 | 61 78 69 73 20 69 73 20 | domain |axis is |
|00004910| 74 68 65 20 6c 69 6e 65 | 20 24 78 3d 30 24 3b 20 |the line| $x=0$; |
|00004920| 70 6f 69 6e 74 73 20 6f | 6e 20 74 68 65 20 64 6f |points o|n the do|
|00004930| 6d 61 69 6e 20 61 78 69 | 73 0d 77 69 6c 6c 20 62 |main axi|s.will b|
|00004940| 65 20 64 65 6e 6f 74 65 | 64 20 24 28 30 2c 73 29 |e denote|d $(0,s)|
|00004950| 24 2e 0d 0d 5c 6e 6f 69 | 6e 64 65 6e 74 5c 71 75 |$...\noi|ndent\qu|
|00004960| 61 64 5c 62 75 6c 6c 0d | 54 68 65 20 72 61 6e 67 |ad\bull.|The rang|
|00004970| 65 2c 20 6f 72 20 69 6d | 61 67 65 2c 20 61 78 69 |e, or im|age, axi|
|00004980| 73 20 69 73 20 74 68 65 | 20 6c 69 6e 65 20 24 78 |s is the| line $x|
|00004990| 3d 31 24 3b 20 70 6f 69 | 6e 74 73 20 68 65 72 65 |=1$; poi|nts here|
|000049a0| 20 61 72 65 20 6f 66 0d | 74 68 65 20 66 6f 72 6d | are of.|the form|
|000049b0| 20 24 5c 62 69 67 6c 28 | 31 2c 66 28 73 29 5c 62 | $\bigl(|1,f(s)\b|
|000049c0| 69 67 72 29 24 2e 0d 0d | 5c 6e 6f 69 6e 64 65 6e |igr)$...|\noinden|
|000049d0| 74 5c 71 75 61 64 5c 62 | 75 6c 6c 0d 54 68 65 20 |t\quad\b|ull.The |
|000049e0| 64 6f 6d 61 69 6e 20 70 | 6f 69 6e 74 20 24 50 5f |domain p|oint $P_|
|000049f0| 73 3d 28 30 2c 20 73 29 | 24 20 69 73 20 6a 6f 69 |s=(0, s)|$ is joi|
|00004a00| 6e 65 64 20 74 6f 20 74 | 68 65 20 69 6d 61 67 65 |ned to t|he image|
|00004a10| 20 70 6f 69 6e 74 0d 24 | 5c 62 69 67 6c 28 31 2c | point.$|\bigl(1,|
|00004a20| 20 66 28 73 29 5c 62 69 | 67 72 29 24 20 62 79 20 | f(s)\bi|gr)$ by |
|00004a30| 74 68 65 20 6d 61 70 70 | 69 6e 67 20 6c 69 6e 65 |the mapp|ing line|
|00004a40| 2c 20 77 68 69 63 68 20 | 77 65 20 77 69 6c 6c 0d |, which |we will.|
|00004a50| 64 65 6e 6f 74 65 20 24 | 5c 4c 5f 73 24 2e 0d 5c |denote $|\L_s$..\|
|00004a60| 6d 65 64 73 6b 69 70 0d | 0d 57 65 20 63 68 6f 6f |medskip.|.We choo|
|00004a70| 73 65 20 74 77 6f 20 63 | 6f 6e 73 74 61 6e 74 73 |se two c|onstants|
|00004a80| 3a 20 24 6b 24 2c 20 74 | 68 65 20 6d 69 6e 69 6d |: $k$, t|he minim|
|00004a90| 61 6c 20 73 70 65 65 64 | 2c 20 61 6e 64 20 24 4b |al speed|, and $K|
|00004aa0| 24 2c 20 74 68 65 0d 73 | 70 72 65 61 64 20 62 65 |$, the.s|pread be|
|00004ab0| 74 77 65 65 6e 20 74 68 | 65 20 6d 69 6e 69 6d 61 |tween th|e minima|
|00004ac0| 6c 20 73 70 65 65 64 20 | 61 6e 64 20 74 68 65 20 |l speed |and the |
|00004ad0| 6d 61 78 69 6d 61 6c 20 | 73 70 65 65 64 2e 20 41 |maximal |speed. A|
|00004ae0| 0d 70 6f 69 6e 74 20 24 | 50 5f 73 24 20 6d 6f 76 |.point $|P_s$ mov|
|00004af0| 65 73 20 6f 6e 20 24 5c | 4c 5f 73 24 20 61 74 20 |es on $\|L_s$ at |
|00004b00| 61 20 68 6f 72 69 7a 6f | 6e 74 61 6c 20 73 70 65 |a horizo|ntal spe|
|00004b10| 65 64 20 24 76 5f 73 3d | 6b 2b 4b 5c 7c 66 27 28 |ed $v_s=|k+K\|f'(|
|00004b20| 73 29 5c 7c 24 2e 0d 54 | 68 65 20 66 6f 6c 6c 6f |s)\|$..T|he follo|
|00004b30| 77 69 6e 67 20 66 75 6e | 64 61 6d 65 6e 74 61 6c |wing fun|damental|
|00004b40| 20 6d 61 70 0d 24 5c 46 | 3a 5c 72 73 70 61 63 65 | map.$\F|:\rspace|
|00004b50| 32 3a 5c 72 69 67 68 74 | 61 72 72 6f 77 5c 72 73 |2:\right|arrow\rs|
|00004b60| 70 61 63 65 32 24 20 64 | 65 74 65 72 6d 69 6e 65 |pace2$ d|etermine|
|00004b70| 73 20 77 68 65 72 65 20 | 74 68 65 20 70 6f 69 6e |s where |the poin|
|00004b80| 74 0d 24 50 5f 73 24 20 | 69 73 20 61 74 20 74 69 |t.$P_s$ |is at ti|
|00004b90| 6d 65 20 24 74 24 20 6f | 6e 20 69 74 73 20 6a 6f |me $t$ o|n its jo|
|00004ba0| 75 72 6e 65 79 20 74 6f | 20 69 74 73 20 69 6d 61 |urney to| its ima|
|00004bb0| 67 65 2e 0d 24 24 5c 65 | 71 61 6c 69 67 6e 7b 0d |ge..$$\e|qalign{.|
|00004bc0| 5c 46 3a 28 73 2c 74 29 | 5c 72 69 67 68 74 61 72 |\F:(s,t)|\rightar|
|00004bd0| 72 6f 77 26 5c 42 69 67 | 6c 28 0d 5c 62 69 67 6c |row&\Big|l(.\bigl|
|00004be0| 28 6b 2b 4b 5c 7c 66 27 | 28 73 29 5c 7c 5c 62 69 |(k+K\|f'|(s)\|\bi|
|00004bf0| 67 72 29 5c 63 64 6f 74 | 20 74 2c 5c 0d 73 2b 5c |gr)\cdot| t,\.s+\|
|00004c00| 62 69 67 6c 28 66 28 73 | 29 2d 73 5c 62 69 67 72 |bigl(f(s|)-s\bigr|
|00004c10| 29 5c 62 69 67 6c 28 6b | 2b 4b 5c 7c 66 27 28 73 |)\bigl(k|+K\|f'(s|
|00004c20| 29 5c 7c 5c 62 69 67 72 | 29 5c 63 64 6f 74 20 74 |)\|\bigr|)\cdot t|
|00004c30| 5c 42 69 67 72 29 5c 63 | 72 0d 3d 26 5c 42 69 67 |\Bigr)\c|r.=&\Big|
|00004c40| 6c 28 76 5f 73 5c 63 64 | 6f 74 20 74 2c 20 73 2b |l(v_s\cd|ot t, s+|
|00004c50| 5c 62 69 67 6c 28 66 28 | 73 29 2d 73 5c 62 69 67 |\bigl(f(|s)-s\big|
|00004c60| 72 29 76 5f 73 5c 63 64 | 6f 74 20 74 5c 42 69 67 |r)v_s\cd|ot t\Big|
|00004c70| 72 29 7d 0d 24 24 0d 0d | 46 69 6e 61 6c 6c 79 2c |r)}.$$..|Finally,|
|00004c80| 20 6c 65 74 20 20 24 5c | 47 5f 66 5c 73 75 62 73 | let $\|G_f\subs|
|00004c90| 65 74 5c 72 73 70 61 63 | 65 32 24 20 64 65 6e 6f |et\rspac|e2$ deno|
|00004ca0| 74 65 20 74 68 65 20 63 | 6c 61 73 73 69 63 61 6c |te the c|lassical|
|00004cb0| 20 67 72 61 70 68 0d 6f | 66 20 74 68 65 20 66 75 | graph.o|f the fu|
|00004cc0| 6e 63 74 69 6f 6e 20 24 | 66 24 2e 20 54 68 65 72 |nction $|f$. Ther|
|00004cd0| 65 20 61 72 65 20 72 65 | 6c 61 74 69 6f 6e 73 20 |e are re|lations |
|00004ce0| 62 65 74 77 65 65 6e 20 | 74 68 65 20 70 6f 69 6e |between |the poin|
|00004cf0| 74 73 20 6f 6e 0d 74 68 | 65 20 6c 69 6e 65 73 20 |ts on.th|e lines |
|00004d00| 24 50 5f 73 24 20 61 6e | 64 20 74 68 65 20 70 6f |$P_s$ an|d the po|
|00004d10| 69 6e 74 73 20 6f 66 20 | 24 5c 47 5f 66 24 3b 20 |ints of |$\G_f$; |
|00004d20| 74 6f 20 66 69 6e 64 20 | 74 68 65 6d 2c 20 74 68 |to find |them, th|
|00004d30| 65 0d 66 6f 6c 6c 6f 77 | 69 6e 67 20 6f 62 73 65 |e.follow|ing obse|
|00004d40| 72 76 61 74 69 6f 6e 20 | 62 79 20 54 2e 20 47 61 |rvation |by T. Ga|
|00004d50| 66 66 6e 65 79 20 69 73 | 20 65 78 74 72 65 6d 65 |ffney is| extreme|
|00004d60| 6c 79 20 75 73 65 66 75 | 6c 2e 0d 5c 6d 65 64 73 |ly usefu|l..\meds|
|00004d70| 6b 69 70 0d 0d 5c 70 72 | 6f 63 6c 61 69 6d 20 4c |kip..\pr|oclaim L|
|00004d80| 65 6d 6d 61 2e 20 53 75 | 70 70 6f 73 65 20 24 5c |emma. Su|ppose $\|
|00004d90| 46 5c 6c 65 66 74 28 73 | 5f 31 2c 74 5f 31 5c 72 |F\left(s|_1,t_1\r|
|00004da0| 69 67 68 74 29 0d 3d 5c | 46 5c 6c 65 66 74 28 73 |ight).=\|F\left(s|
|00004db0| 5f 32 2c 74 5f 32 5c 72 | 69 67 68 74 29 24 3b 20 |_2,t_2\r|ight)$; |
|00004dc0| 74 68 65 6e 20 74 68 65 | 20 73 65 63 61 6e 74 20 |then the| secant |
|00004dd0| 6c 69 6e 65 20 63 6f 6e | 6e 65 63 74 69 6e 67 0d |line con|necting.|
|00004de0| 74 68 65 20 70 6f 69 6e | 74 73 20 24 5c 62 69 67 |the poin|ts $\big|
|00004df0| 6c 28 73 5f 31 2c 20 66 | 28 73 5f 31 29 5c 62 69 |l(s_1, f|(s_1)\bi|
|00004e00| 67 72 29 24 20 61 6e 64 | 20 24 5c 62 69 67 6c 28 |gr)$ and| $\bigl(|
|00004e10| 73 5f 32 2c 20 66 28 73 | 5f 32 29 0d 5c 62 69 67 |s_2, f(s|_2).\big|
|00004e20| 72 29 24 20 6f 6e 20 24 | 5c 47 5f 66 24 20 68 61 |r)$ on $|\G_f$ ha|
|00004e30| 73 20 73 6c 6f 70 65 20 | 24 7b 43 2d 31 5c 6f 76 |s slope |${C-1\ov|
|00004e40| 65 72 20 43 7d 24 20 77 | 68 65 72 65 0d 24 43 3d |er C}$ w|here.$C=|
|00004e50| 5c 62 69 67 6c 28 6b 2b | 4b 5c 7c 66 27 28 73 5f |\bigl(k+|K\|f'(s_|
|00004e60| 31 29 5c 7c 5c 62 69 67 | 72 29 5c 63 64 6f 74 20 |1)\|\big|r)\cdot |
|00004e70| 74 5f 31 20 3d 0d 20 20 | 20 5c 62 69 67 6c 28 6b |t_1 =. | \bigl(k|
|00004e80| 2b 4b 5c 7c 66 27 28 73 | 5f 32 29 5c 7c 5c 62 69 |+K\|f'(s|_2)\|\bi|
|00004e90| 67 72 29 5c 63 64 6f 74 | 20 74 5f 32 24 2e 0d 5c |gr)\cdot| t_2$..\|
|00004ea0| 6d 65 64 73 6b 69 70 0d | 0d 54 68 69 73 20 65 73 |medskip.|.This es|
|00004eb0| 74 61 62 6c 69 73 68 65 | 73 20 61 20 60 60 64 75 |tablishe|s a ``du|
|00004ec0| 61 6c 69 74 79 27 27 20 | 62 65 74 77 65 65 6e 20 |ality'' |between |
|00004ed0| 70 61 69 72 73 20 6f 66 | 20 6d 61 70 70 69 6e 67 |pairs of| mapping|
|00004ee0| 20 6c 69 6e 65 73 0d 24 | 5c 4c 5f 7b 73 5f 31 7d | lines.$|\L_{s_1}|
|00004ef0| 5c 61 6e 64 5c 4c 5f 7b | 73 5f 32 7d 24 20 69 6e |\and\L_{|s_2}$ in|
|00004f00| 20 74 68 65 20 66 75 6e | 63 74 69 6f 6e 20 64 69 | the fun|ction di|
|00004f10| 61 67 72 61 6d 20 61 6e | 64 20 70 61 69 72 73 20 |agram an|d pairs |
|00004f20| 6f 66 20 70 6f 69 6e 74 | 73 0d 24 5c 6c 65 66 74 |of point|s.$\left|
|00004f30| 28 73 5f 31 2c 66 28 73 | 5f 31 29 5c 72 69 67 68 |(s_1,f(s|_1)\righ|
|00004f40| 74 29 5c 61 6e 64 20 5c | 6c 65 66 74 28 73 5f 32 |t)\and \|left(s_2|
|00004f50| 2c 66 28 73 5f 32 29 5c | 72 69 67 68 74 29 24 20 |,f(s_2)\|right)$ |
|00004f60| 6f 6e 20 74 68 65 0d 67 | 72 61 70 68 20 24 5c 47 |on the.g|raph $\G|
|00004f70| 5f 66 24 2e 20 54 68 65 | 20 61 62 73 63 69 73 73 |_f$. The| absciss|
|00004f80| 61 20 24 43 24 20 6f 66 | 20 74 68 65 20 69 6e 74 |a $C$ of| the int|
|00004f90| 65 72 73 65 63 74 69 6f | 6e 20 6f 66 20 74 68 65 |ersectio|n of the|
|00004fa0| 0d 6d 61 70 70 69 6e 67 | 20 6c 69 6e 65 73 20 64 |.mapping| lines d|
|00004fb0| 65 74 65 72 6d 69 6e 65 | 73 20 74 68 65 20 73 6c |etermine|s the sl|
|00004fc0| 6f 70 65 20 24 7b 43 2d | 31 5c 6f 76 65 72 20 43 |ope ${C-|1\over C|
|00004fd0| 7d 24 20 6f 66 20 74 68 | 65 20 73 65 63 61 6e 74 |}$ of th|e secant|
|00004fe0| 0d 6c 69 6e 65 20 74 6f | 20 74 68 65 20 67 72 61 |.line to| the gra|
|00004ff0| 70 68 2c 20 69 2e 65 2e | 20 74 68 65 20 61 76 65 |ph, i.e.| the ave|
|00005000| 72 61 67 65 20 72 61 74 | 65 20 6f 66 20 63 68 61 |rage rat|e of cha|
|00005010| 6e 67 65 20 6f 66 20 24 | 66 24 2e 20 49 66 0d 74 |nge of $|f$. If.t|
|00005020| 68 65 20 6d 61 70 70 69 | 6e 67 20 6c 69 6e 65 73 |he mappi|ng lines|
|00005030| 20 61 72 65 20 70 61 72 | 61 6c 6c 65 6c 20 28 69 | are par|allel (i|
|00005040| 6e 74 65 72 73 65 63 74 | 20 61 74 20 69 6e 66 69 |ntersect| at infi|
|00005050| 6e 69 74 79 29 2c 20 74 | 68 65 0d 61 76 65 72 61 |nity), t|he.avera|
|00005060| 67 65 20 72 61 74 65 20 | 6f 66 20 63 68 61 6e 67 |ge rate |of chang|
|00005070| 65 20 69 73 20 24 5c 6c | 69 6d 5f 7b 43 5c 72 69 |e is $\l|im_{C\ri|
|00005080| 67 68 74 61 72 72 6f 77 | 5c 69 6e 66 74 79 7d 7b |ghtarrow|\infty}{|
|00005090| 43 2d 31 5c 6f 76 65 72 | 0d 43 7d 20 3d 20 31 24 |C-1\over|.C} = 1$|
|000050a0| 2e 0d 0d 49 66 20 74 68 | 65 20 76 61 6c 75 65 20 |...If th|e value |
|000050b0| 24 73 5f 31 24 20 69 73 | 20 68 65 6c 64 20 66 69 |$s_1$ is| held fi|
|000050c0| 78 65 64 2c 20 61 6e 64 | 20 24 73 5f 32 5c 72 69 |xed, and| $s_2\ri|
|000050d0| 67 68 74 61 72 72 6f 77 | 20 73 5f 31 24 2c 0d 74 |ghtarrow| s_1$,.t|
|000050e0| 68 65 6e 20 74 68 65 20 | 73 65 63 61 6e 74 20 6c |hen the |secant l|
|000050f0| 69 6e 65 20 61 70 70 72 | 6f 61 63 68 65 73 20 74 |ine appr|oaches t|
|00005100| 68 65 20 74 61 6e 67 65 | 6e 74 20 6c 69 6e 65 20 |he tange|nt line |
|00005110| 61 6e 64 20 74 68 65 20 | 72 61 74 65 73 0d 6f 66 |and the |rates.of|
|00005120| 20 63 68 61 6e 67 65 20 | 28 73 6c 6f 70 65 73 29 | change |(slopes)|
|00005130| 20 61 70 70 72 6f 61 63 | 68 20 74 68 65 20 64 65 | approac|h the de|
|00005140| 72 69 76 61 74 69 76 65 | 2e 20 49 6e 20 74 68 65 |rivative|. In the|
|00005150| 20 6d 61 70 70 69 6e 67 | 0d 64 69 61 67 72 61 6d | mapping|.diagram|
|00005160| 2c 20 74 68 65 20 6d 61 | 70 70 69 6e 67 20 6c 69 |, the ma|pping li|
|00005170| 6e 65 20 24 5c 4c 5f 7b | 73 5f 32 7d 24 20 61 70 |ne $\L_{|s_2}$ ap|
|00005180| 70 72 6f 61 63 68 65 73 | 20 74 68 65 20 6d 61 70 |proaches| the map|
|00005190| 70 69 6e 67 20 6c 69 6e | 65 0d 24 5c 4c 5f 7b 73 |ping lin|e.$\L_{s|
|000051a0| 5f 31 7d 24 2c 20 77 69 | 74 68 20 74 68 65 69 72 |_1}$, wi|th their|
|000051b0| 20 70 6f 69 6e 74 20 6f | 66 20 69 6e 74 65 72 73 | point o|f inters|
|000051c0| 65 63 74 69 6f 6e 20 61 | 70 70 72 6f 61 63 68 69 |ection a|pproachi|
|000051d0| 6e 67 20 61 0d 70 6f 69 | 6e 74 20 77 68 6f 73 65 |ng a.poi|nt whose|
|000051e0| 20 61 62 73 63 69 73 73 | 61 20 24 43 24 20 67 69 | absciss|a $C$ gi|
|000051f0| 76 65 73 20 24 7b 43 2d | 31 5c 6f 76 65 72 20 43 |ves ${C-|1\over C|
|00005200| 7d 20 3d 20 66 27 28 73 | 5f 31 29 24 2e 20 54 68 |} = f'(s|_1)$. Th|
|00005210| 65 0d 70 72 6f 6f 66 20 | 6f 66 20 74 68 69 73 20 |e.proof |of this |
|00005220| 66 61 63 74 20 69 73 20 | 61 20 6e 69 63 65 20 65 |fact is |a nice e|
|00005230| 78 65 72 63 69 73 65 20 | 69 6e 20 65 6c 65 6d 65 |xercise |in eleme|
|00005240| 6e 74 61 72 79 20 63 61 | 6c 63 75 6c 75 73 2e 0d |ntary ca|lculus..|
|00005250| 54 68 69 73 20 6c 69 6d | 69 74 69 6e 67 20 70 6f |This lim|iting po|
|00005260| 69 6e 74 20 6c 69 65 73 | 20 6f 6e 20 74 68 65 20 |int lies| on the |
|00005270| 60 60 65 6e 76 65 6c 6f | 70 65 27 27 20 66 6f 72 |``envelo|pe'' for|
|00005280| 6d 65 64 20 62 79 20 74 | 68 65 0d 6d 61 70 70 69 |med by t|he.mappi|
|00005290| 6e 67 20 6c 69 6e 65 73 | 3a 20 73 65 65 20 74 68 |ng lines|: see th|
|000052a0| 65 20 74 6f 70 20 6f 66 | 20 66 69 67 75 72 65 20 |e top of| figure |
|000052b0| 34 2e 20 54 68 75 73 2c | 20 6c 69 6d 69 74 69 6e |4. Thus,| limitin|
|000052c0| 67 0d 70 6f 69 6e 74 73 | 20 6f 66 20 69 6e 74 65 |g.points| of inte|
|000052d0| 72 73 65 63 74 69 6f 6e | 20 69 6e 20 74 68 65 20 |rsection| in the |
|000052e0| 6d 61 70 70 69 6e 67 20 | 64 69 61 67 72 61 6d 20 |mapping |diagram |
|000052f0| 63 6f 72 72 65 73 70 6f | 6e 64 20 74 6f 0d 74 61 |correspo|nd to.ta|
|00005300| 6e 67 65 6e 74 20 6c 69 | 6e 65 73 20 74 6f 20 74 |ngent li|nes to t|
|00005310| 68 65 20 67 72 61 70 68 | 2e 0d 0d 0d 5c 6d 65 64 |he graph|....\med|
|00005320| 73 6b 69 70 0d 5c 6c 69 | 6e 65 7b 5c 68 66 69 6c |skip.\li|ne{\hfil|
|00005330| 6c 0d 5c 76 62 6f 78 20 | 74 6f 20 33 74 72 75 65 |l.\vbox |to 3true|
|00005340| 69 6e 7b 5c 68 73 69 7a | 65 35 74 72 75 65 69 6e |in{\hsiz|e5truein|
|00005350| 5c 76 66 69 6c 6c 5c 73 | 70 65 63 69 61 6c 7b 70 |\vfill\s|pecial{p|
|00005360| 63 6c 3a 65 6e 76 65 6c | 6f 70 65 2e 70 63 6c 7d |cl:envel|ope.pcl}|
|00005370| 0d 5c 68 66 69 6c 6c 7d | 5c 68 66 69 6c 6c 7d 0d |.\hfill}|\hfill}.|
|00005380| 5c 73 6d 61 6c 6c 73 6b | 69 70 0d 5c 63 65 6e 74 |\smallsk|ip.\cent|
|00005390| 65 72 6c 69 6e 65 7b 5c | 62 66 20 46 69 67 75 72 |erline{\|bf Figur|
|000053a0| 65 20 34 7d 0d 5c 6d 65 | 64 73 6b 69 70 0d 0d 0d |e 4}.\me|dskip...|
|000053b0| 0d 57 65 20 63 61 6e 20 | 61 63 74 75 61 6c 6c 79 |.We can |actually|
|000053c0| 20 66 69 6e 64 20 74 68 | 65 20 28 70 61 72 61 6d | find th|e (param|
|000053d0| 65 74 72 69 63 29 20 65 | 71 75 61 74 69 6f 6e 20 |etric) e|quation |
|000053e0| 6f 66 20 74 68 65 0d 65 | 6e 76 65 6c 6f 70 65 20 |of the.e|nvelope |
|000053f0| 66 6f 72 6d 65 64 20 62 | 79 20 74 68 65 20 6d 61 |formed b|y the ma|
|00005400| 70 70 69 6e 67 20 6c 69 | 6e 65 73 2e 20 54 68 65 |pping li|nes. The|
|00005410| 20 6d 61 70 70 69 6e 67 | 20 6c 69 6e 65 20 24 5c | mapping| line $\|
|00005420| 4c 5f 73 24 0d 68 61 73 | 20 65 71 75 61 74 69 6f |L_s$.has| equatio|
|00005430| 6e 20 24 79 20 3d 20 73 | 20 2b 20 5c 62 69 67 6c |n $y = s| + \bigl|
|00005440| 28 66 28 73 29 2d 73 5c | 62 69 67 72 29 5c 63 64 |(f(s)-s\|bigr)\cd|
|00005450| 6f 74 20 78 24 20 73 69 | 6e 63 65 20 69 74 0d 6a |ot x$ si|nce it.j|
|00005460| 6f 69 6e 73 20 24 28 30 | 2c 73 29 24 20 77 69 74 |oins $(0|,s)$ wit|
|00005470| 68 20 24 28 31 2c 66 28 | 73 29 29 24 2e 20 54 68 |h $(1,f(|s))$. Th|
|00005480| 65 20 65 6e 76 65 6c 6f | 70 65 20 70 6f 69 6e 74 |e envelo|pe point|
|00005490| 20 6f 6e 20 69 74 20 68 | 61 73 2c 0d 61 73 20 77 | on it h|as,.as w|
|000054a0| 65 20 68 61 76 65 20 73 | 65 65 6e 2c 20 61 62 73 |e have s|een, abs|
|000054b0| 63 69 73 73 61 20 24 43 | 24 2c 20 77 68 65 72 65 |cissa $C|$, where|
|000054c0| 20 24 7b 43 2d 31 5c 6f | 76 65 72 20 43 7d 20 3d | ${C-1\o|ver C} =|
|000054d0| 20 66 27 28 73 29 24 3b | 0d 69 2e 65 2e 20 24 43 | f'(s)$;|.i.e. $C|
|000054e0| 20 3d 20 7b 31 5c 6f 76 | 65 72 20 31 2d 66 27 28 | = {1\ov|er 1-f'(|
|000054f0| 73 29 7d 24 2e 0d 5c 6d | 65 64 73 6b 69 70 0d 0d |s)}$..\m|edskip..|
|00005500| 5c 70 72 6f 63 6c 61 69 | 6d 20 50 72 6f 70 6f 73 |\proclai|m Propos|
|00005510| 69 74 69 6f 6e 20 31 2e | 20 54 68 65 20 65 6e 76 |ition 1.| The env|
|00005520| 65 6c 6f 70 65 20 6f 66 | 20 74 68 65 20 6d 61 70 |elope of| the map|
|00005530| 70 69 6e 67 20 64 69 61 | 67 72 61 6d 0d 66 6f 72 |ping dia|gram.for|
|00005540| 20 24 66 24 20 69 73 20 | 70 61 72 61 6d 65 74 72 | $f$ is |parametr|
|00005550| 69 7a 65 64 20 62 79 3a | 0d 24 24 0d 73 5c 6d 61 |ized by:|.$$.s\ma|
|00005560| 70 73 74 6f 20 5c 6c 65 | 66 74 28 7b 31 5c 6f 76 |psto \le|ft({1\ov|
|00005570| 65 72 20 31 2d 66 27 28 | 73 29 7d 2c 5c 20 7b 66 |er 1-f'(|s)},\ {f|
|00005580| 28 73 29 2d 73 66 27 28 | 73 29 5c 6f 76 65 72 0d |(s)-sf'(|s)\over.|
|00005590| 31 2d 66 27 28 73 29 7d | 5c 72 69 67 68 74 29 2e |1-f'(s)}|\right).|
|000055a0| 0d 24 24 0d 0d 42 65 63 | 61 75 73 65 20 6f 66 20 |.$$..Bec|ause of |
|000055b0| 74 68 65 20 77 61 79 20 | 74 68 65 20 56 69 73 75 |the way |the Visu|
|000055c0| 61 6c 69 7a 65 72 20 68 | 61 73 20 62 65 65 6e 20 |alizer h|as been |
|000055d0| 73 65 74 20 75 70 2c 20 | 69 74 20 6f 6e 6c 79 0d |set up, |it only.|
|000055e0| 64 69 73 70 6c 61 79 73 | 20 74 68 6f 73 65 20 70 |displays| those p|
|000055f0| 61 72 74 73 20 6f 66 20 | 74 68 65 20 6d 61 70 70 |arts of |the mapp|
|00005600| 69 6e 67 20 6c 69 6e 65 | 73 20 77 68 69 63 68 20 |ing line|s which |
|00005610| 6c 69 65 20 62 65 74 77 | 65 65 6e 0d 74 68 65 20 |lie betw|een.the |
|00005620| 64 6f 6d 61 69 6e 20 6c | 69 6e 65 20 28 24 78 3d |domain l|ine ($x=|
|00005630| 30 24 29 20 61 6e 64 20 | 74 68 65 20 72 61 6e 67 |0$) and |the rang|
|00005640| 65 20 6c 69 6e 65 20 28 | 24 78 3d 31 24 29 2e 0d |e line (|$x=1$)..|
|00005650| 43 6f 6e 73 65 71 75 65 | 6e 74 6c 79 2c 20 74 68 |Conseque|ntly, th|
|00005660| 65 20 69 6e 74 65 72 73 | 65 63 74 69 6f 6e 20 6f |e inters|ection o|
|00005670| 66 20 6d 61 70 70 69 6e | 67 20 6c 69 6e 65 73 20 |f mappin|g lines |
|00005680| 77 69 6c 6c 20 6f 6e 6c | 79 20 62 65 0d 76 69 73 |will onl|y be.vis|
|00005690| 69 62 6c 65 20 66 6f 72 | 20 7b 5c 69 74 20 64 65 |ible for| {\it de|
|000056a0| 63 72 65 61 73 69 6e 67 | 7d 20 66 75 6e 63 74 69 |creasing|} functi|
|000056b0| 6f 6e 73 2e 20 54 68 69 | 73 20 69 73 20 6e 6f 74 |ons. Thi|s is not|
|000056c0| 20 61 20 73 65 72 69 6f | 75 73 0d 6c 69 6d 69 74 | a serio|us.limit|
|000056d0| 61 74 69 6f 6e 2c 20 73 | 69 6e 63 65 20 6f 6e 65 |ation, s|ince one|
|000056e0| 20 63 61 6e 20 72 65 70 | 6c 61 63 65 20 24 66 24 | can rep|lace $f$|
|000056f0| 20 62 79 20 24 2d 66 24 | 20 69 66 20 6e 65 63 65 | by $-f$| if nece|
|00005700| 73 73 61 72 79 2e 0d 0d | 46 69 67 75 72 65 20 34 |ssary...|Figure 4|
|00005710| 20 73 68 6f 77 73 20 61 | 6e 20 65 78 61 6d 70 6c | shows a|n exampl|
|00005720| 65 20 66 6f 72 20 74 68 | 65 20 66 75 6e 63 74 69 |e for th|e functi|
|00005730| 6f 6e 0d 24 73 5c 6d 61 | 70 73 74 6f 20 2d 73 5e |on.$s\ma|psto -s^|
|00005740| 32 24 2e 20 54 68 65 20 | 6d 61 70 70 69 6e 67 20 |2$. The |mapping |
|00005750| 6c 69 6e 65 20 24 5c 4c | 5f 7b 31 2e 36 7d 24 20 |line $\L|_{1.6}$ |
|00005760| 68 61 73 20 62 65 65 6e | 0d 68 69 67 68 6c 69 67 |has been|.highlig|
|00005770| 68 74 65 64 20 28 64 6f | 6e 65 20 69 6e 20 63 6f |hted (do|ne in co|
|00005780| 6c 6f 72 20 62 79 20 74 | 68 65 20 56 69 73 75 61 |lor by t|he Visua|
|00005790| 6c 69 7a 65 72 29 2e 20 | 49 74 20 69 73 20 74 61 |lizer). |It is ta|
|000057a0| 6e 67 65 6e 74 0d 74 6f | 20 74 68 65 20 65 6e 76 |ngent.to| the env|
|000057b0| 65 6c 6f 70 65 20 61 74 | 20 61 20 70 6f 69 6e 74 |elope at| a point|
|000057c0| 20 77 68 6f 73 65 20 61 | 62 73 63 69 73 73 61 20 | whose a|bscissa |
|000057d0| 63 61 6e 20 62 65 20 65 | 61 73 69 6c 79 0d 65 73 |can be e|asily.es|
|000057e0| 74 69 6d 61 74 65 64 20 | 28 75 73 69 6e 67 20 61 |timated |(using a|
|000057f0| 20 6d 6f 75 73 65 2d 73 | 65 6e 73 69 74 69 76 65 | mouse-s|ensitive|
|00005800| 20 63 6f 6f 72 64 69 6e | 61 74 65 20 64 69 73 70 | coordin|ate disp|
|00005810| 6c 61 79 29 20 74 6f 20 | 62 65 0d 24 43 5c 61 70 |lay) to |be.$C\ap|
|00005820| 70 72 6f 78 20 32 2e 34 | 24 2e 20 54 68 69 73 20 |prox 2.4|$. This |
|00005830| 67 69 76 65 73 20 61 6e | 20 65 73 74 69 6d 61 74 |gives an| estimat|
|00005840| 65 20 66 6f 72 20 74 68 | 65 20 64 65 72 69 76 61 |e for th|e deriva|
|00005850| 74 69 76 65 20 6f 66 0d | 24 2d 33 2e 31 36 37 24 |tive of.|$-3.167$|
|00005860| 20 77 68 69 63 68 20 69 | 73 20 66 61 69 72 6c 79 | which i|s fairly|
|00005870| 20 63 6c 6f 73 65 20 74 | 6f 20 74 68 65 20 63 6f | close t|o the co|
|00005880| 72 72 65 63 74 20 76 61 | 6c 75 65 20 6f 66 20 24 |rrect va|lue of $|
|00005890| 2d 33 2e 32 24 2e 0d 53 | 69 6e 63 65 20 24 66 27 |-3.2$..S|ince $f'|
|000058a0| 28 73 29 3d 20 2d 32 73 | 24 2c 20 74 68 65 20 70 |(s)= -2s|$, the p|
|000058b0| 61 72 61 6d 65 74 72 69 | 7a 61 74 69 6f 6e 20 6f |arametri|zation o|
|000058c0| 66 20 74 68 65 20 65 6e | 76 65 6c 6f 70 65 0d 62 |f the en|velope.b|
|000058d0| 65 63 6f 6d 65 73 0d 24 | 24 0d 73 5c 6d 61 70 73 |ecomes.$|$.s\maps|
|000058e0| 74 6f 20 5c 6c 65 66 74 | 28 5c 75 6e 64 65 72 62 |to \left|(\underb|
|000058f0| 72 61 63 65 7b 31 5c 6f | 76 65 72 20 31 2b 32 73 |race{1\o|ver 1+2s|
|00005900| 7d 5f 78 2c 20 5c 75 6e | 64 65 72 62 72 61 63 65 |}_x, \un|derbrace|
|00005910| 0d 7b 73 5e 32 5c 6f 76 | 65 72 20 31 2b 32 73 7d |.{s^2\ov|er 1+2s}|
|00005920| 5f 79 5c 72 69 67 68 74 | 29 2e 0d 24 24 0d 0d 48 |_y\right|)..$$..H|
|00005930| 65 72 65 20 69 74 27 73 | 20 70 6f 73 73 69 62 6c |ere it's| possibl|
|00005940| 65 20 74 6f 20 65 6c 69 | 6d 69 6e 61 74 65 20 74 |e to eli|minate t|
|00005950| 68 65 20 70 61 72 61 6d | 65 74 65 72 20 24 73 24 |he param|eter $s$|
|00005960| 2c 20 77 68 69 63 68 0d | 79 69 65 6c 64 73 20 74 |, which.|yields t|
|00005970| 68 65 20 65 78 70 6c 69 | 63 69 74 20 65 71 75 61 |he expli|cit equa|
|00005980| 74 69 6f 6e 20 66 6f 72 | 20 74 68 65 20 65 6e 76 |tion for| the env|
|00005990| 65 6c 6f 70 65 3a 20 24 | 20 79 20 3d 20 28 31 2f |elope: $| y = (1/|
|000059a0| 78 20 2d 20 32 0d 2d 20 | 78 29 2f 34 24 2e 0d 0d |x - 2.- |x)/4$...|
|000059b0| 46 69 6e 61 6c 6c 79 2c | 20 72 65 74 75 72 6e 69 |Finally,| returni|
|000059c0| 6e 67 20 74 6f 20 74 68 | 65 20 67 65 6e 65 72 61 |ng to th|e genera|
|000059d0| 6c 20 63 61 73 65 2c 20 | 74 68 6f 73 65 20 63 72 |l case, |those cr|
|000059e0| 69 74 69 63 61 6c 20 70 | 6f 69 6e 74 73 0d 66 6f |itical p|oints.fo|
|000059f0| 72 20 77 68 69 63 68 20 | 24 66 27 28 61 29 20 3d |r which |$f'(a) =|
|00005a00| 20 30 24 20 63 6f 72 72 | 65 73 70 6f 6e 64 20 74 | 0$ corr|espond t|
|00005a10| 6f 20 70 6f 69 6e 74 73 | 20 6f 6e 20 74 68 65 20 |o points| on the |
|00005a20| 65 6e 76 65 6c 6f 70 65 | 0d 24 28 31 2c 66 28 61 |envelope|.$(1,f(a|
|00005a30| 29 29 24 3b 20 74 68 75 | 73 2c 20 24 66 27 28 61 |))$; thu|s, $f'(a|
|00005a40| 29 20 3d 20 30 24 20 69 | 66 20 61 6e 64 20 6f 6e |) = 0$ i|f and on|
|00005a50| 6c 79 20 69 66 20 74 68 | 65 20 6d 61 70 70 69 6e |ly if th|e mappin|
|00005a60| 67 20 6c 69 6e 65 0d 24 | 5c 4c 5f 61 24 20 69 73 |g line.$|\L_a$ is|
|00005a70| 20 74 61 6e 67 65 6e 74 | 20 74 6f 20 74 68 65 20 | tangent| to the |
|00005a80| 65 6e 76 65 6c 6f 70 65 | 20 61 74 20 74 68 65 20 |envelope| at the |
|00005a90| 72 61 6e 67 65 20 6c 69 | 6e 65 20 24 78 3d 31 24 |range li|ne $x=1$|
|00005aa0| 2e 0d 54 68 75 73 2c 20 | 74 68 65 20 6d 61 70 70 |..Thus, |the mapp|
|00005ab0| 69 6e 67 20 64 69 61 67 | 72 61 6d 20 64 65 74 65 |ing diag|ram dete|
|00005ac0| 63 74 73 20 74 68 65 73 | 65 20 6f 72 64 69 6e 61 |cts thes|e ordina|
|00005ad0| 72 79 20 63 72 69 74 69 | 63 61 6c 0d 70 6f 69 6e |ry criti|cal.poin|
|00005ae0| 74 73 2e 0d 5c 62 69 67 | 73 6b 69 70 0d 0d 0d 5c |ts..\big|skip...\|
|00005af0| 62 65 67 69 6e 73 65 63 | 74 69 6f 6e 7b 57 61 76 |beginsec|tion{Wav|
|00005b00| 65 20 46 72 6f 6e 74 73 | 20 61 6e 64 20 53 69 6e |e Fronts| and Sin|
|00005b10| 67 75 6c 61 72 69 74 69 | 65 73 7d 0d 0d 41 73 20 |gulariti|es}..As |
|00005b20| 6d 65 6e 74 69 6f 6e 65 | 64 20 61 62 6f 76 65 2c |mentione|d above,|
|00005b30| 20 63 75 73 70 73 20 66 | 6f 72 6d 20 61 74 20 70 | cusps f|orm at p|
|00005b40| 6c 61 63 65 73 20 77 68 | 65 72 65 20 74 68 65 20 |laces wh|ere the |
|00005b50| 64 65 72 69 76 61 74 69 | 76 65 0d 68 61 73 20 61 |derivati|ve.has a|
|00005b60| 20 6d 61 78 69 6d 75 6d | 20 6f 72 20 6d 69 6e 69 | maximum| or mini|
|00005b70| 6d 75 6d 3b 20 69 2e 65 | 2e 20 77 68 65 72 65 20 |mum; i.e|. where |
|00005b80| 24 66 27 27 28 73 29 3d | 30 24 2e 20 4f 6e 65 20 |$f''(s)=|0$. One |
|00005b90| 63 61 6e 20 61 73 6b 0d | 65 78 61 63 74 6c 79 20 |can ask.|exactly |
|00005ba0| 77 68 65 72 65 20 6f 6e | 20 74 68 65 20 6d 61 70 |where on| the map|
|00005bb0| 70 69 6e 67 20 64 69 61 | 67 72 61 6d 20 74 68 69 |ping dia|gram thi|
|00005bc0| 73 20 6f 63 63 75 72 73 | 2e 20 54 68 65 20 61 6e |s occurs|. The an|
|00005bd0| 73 77 65 72 0d 69 73 20 | 74 68 61 74 20 69 74 20 |swer.is |that it |
|00005be0| 6f 63 63 75 72 73 20 77 | 68 65 72 65 20 74 68 65 |occurs w|here the|
|00005bf0| 20 65 6e 76 65 6c 6f 70 | 65 20 6d 65 65 74 73 20 | envelop|e meets |
|00005c00| 74 68 65 20 6d 61 70 70 | 69 6e 67 20 6c 69 6e 65 |the mapp|ing line|
|00005c10| 0d 66 6f 72 20 73 75 63 | 68 20 70 6f 69 6e 74 73 |.for suc|h points|
|00005c20| 20 24 73 24 2e 20 4d 6f | 72 65 20 70 72 65 63 69 | $s$. Mo|re preci|
|00005c30| 73 65 6c 79 2c 20 64 65 | 66 69 6e 65 20 74 68 65 |sely, de|fine the|
|00005c40| 20 77 61 76 65 20 66 72 | 6f 6e 74 20 61 74 0d 28 | wave fr|ont at.(|
|00005c50| 74 69 6d 65 29 20 24 74 | 24 20 74 6f 20 62 65 20 |time) $t|$ to be |
|00005c60| 74 68 65 20 63 75 72 76 | 65 20 24 5c 66 5f 74 3a |the curv|e $\f_t:|
|00005c70| 5c 72 73 70 61 63 65 31 | 5c 72 69 67 68 74 61 72 |\rspace1|\rightar|
|00005c80| 72 6f 77 20 5c 72 73 70 | 61 63 65 32 24 0d 67 69 |row \rsp|ace2$.gi|
|00005c90| 76 65 6e 20 62 79 0d 24 | 24 5c 65 71 61 6c 69 67 |ven by.$|$\eqalig|
|00005ca0| 6e 7b 5c 66 5f 74 28 73 | 29 20 3d 20 5c 46 28 73 |n{\f_t(s|) = \F(s|
|00005cb0| 2c 74 29 26 3d 5c 42 69 | 67 6c 28 0d 5c 62 69 67 |,t)&=\Bi|gl(.\big|
|00005cc0| 6c 28 6b 2b 4b 5c 7c 66 | 27 28 73 29 5c 7c 5c 62 |l(k+K\|f|'(s)\|\b|
|00005cd0| 69 67 72 29 5c 63 64 6f | 74 20 74 2c 5c 0d 73 2b |igr)\cdo|t t,\.s+|
|00005ce0| 5c 62 69 67 6c 28 66 28 | 73 29 2d 73 5c 62 69 67 |\bigl(f(|s)-s\big|
|00005cf0| 72 29 5c 62 69 67 6c 28 | 6b 2b 4b 5c 7c 66 27 28 |r)\bigl(|k+K\|f'(|
|00005d00| 73 29 5c 7c 5c 62 69 67 | 72 29 5c 63 64 6f 74 20 |s)\|\big|r)\cdot |
|00005d10| 74 5c 42 69 67 72 29 5c | 63 72 0d 26 3d 5c 42 69 |t\Bigr)\|cr.&=\Bi|
|00005d20| 67 6c 28 76 5f 73 74 2c | 20 73 2b 5c 62 69 67 6c |gl(v_st,| s+\bigl|
|00005d30| 28 66 28 73 29 2d 73 5c | 62 69 67 72 29 76 5f 73 |(f(s)-s\|bigr)v_s|
|00005d40| 74 5c 42 69 67 72 29 7d | 24 24 0d 0d 5c 6e 6f 69 |t\Bigr)}|$$..\noi|
|00005d50| 6e 64 65 6e 74 20 28 77 | 68 65 72 65 20 24 76 5f |ndent (w|here $v_|
|00005d60| 73 3d 6b 2b 4b 5c 7c 66 | 27 28 73 29 5c 7c 24 20 |s=k+K\|f|'(s)\|$ |
|00005d70| 69 73 20 74 68 65 20 70 | 6f 69 6e 74 27 73 20 73 |is the p|oint's s|
|00005d80| 70 65 65 64 29 2e 0d 0d | 42 65 63 61 75 73 65 20 |peed)...|Because |
|00005d90| 74 68 65 20 73 70 65 65 | 64 20 74 68 65 20 70 6f |the spee|d the po|
|00005da0| 69 6e 74 73 20 6d 6f 76 | 65 20 69 73 20 64 65 74 |ints mov|e is det|
|00005db0| 65 72 6d 69 6e 65 64 20 | 62 79 20 24 5c 7c 66 27 |ermined |by $\|f'|
|00005dc0| 28 73 29 5c 7c 24 2c 0d | 74 68 65 72 65 20 77 69 |(s)\|$,.|there wi|
|00005dd0| 6c 6c 20 7b 5c 69 74 20 | 61 6c 77 61 79 73 7d 20 |ll {\it |always} |
|00005de0| 62 65 20 61 20 63 75 73 | 70 20 61 74 20 70 6c 61 |be a cus|p at pla|
|00005df0| 63 65 73 20 77 68 65 72 | 65 20 24 66 27 28 73 29 |ces wher|e $f'(s)|
|00005e00| 3d 30 24 0d 61 6e 64 20 | 24 66 27 27 28 73 29 5c |=0$.and |$f''(s)\|
|00005e10| 6e 65 30 24 2e 20 57 65 | 20 73 68 61 6c 6c 20 63 |ne0$. We| shall c|
|00005e20| 6f 6e 73 69 64 65 72 2c | 20 74 68 65 6e 2c 20 6f |onsider,| then, o|
|00005e30| 6e 6c 79 20 70 6c 61 63 | 65 73 20 77 68 65 72 65 |nly plac|es where|
|00005e40| 0d 24 66 27 28 73 29 5c | 6e 65 30 24 2e 0d 5c 6d |.$f'(s)\|ne0$..\m|
|00005e50| 65 64 73 6b 69 70 0d 0d | 5c 70 72 6f 63 6c 61 69 |edskip..|\proclai|
|00005e60| 6d 20 50 72 6f 70 6f 73 | 69 74 69 6f 6e 20 32 2e |m Propos|ition 2.|
|00005e70| 20 53 75 70 70 6f 73 65 | 20 24 66 27 5c 6e 65 30 | Suppose| $f'\ne0|
|00005e80| 24 20 69 6e 20 73 6f 6d | 65 20 72 65 67 69 6f 6e |$ in som|e region|
|00005e90| 20 6f 66 20 74 68 65 0d | 64 6f 6d 61 69 6e 2e 20 | of the.|domain. |
|00005ea0| 54 68 65 6e 20 63 75 73 | 70 73 20 6f 66 20 74 68 |Then cus|ps of th|
|00005eb0| 65 20 77 61 76 65 20 66 | 72 6f 6e 74 20 24 5c 66 |e wave f|ront $\f|
|00005ec0| 5f 74 24 20 66 6f 72 6d | 20 61 74 20 74 68 6f 73 |_t$ form| at thos|
|00005ed0| 65 0d 70 6c 61 63 65 73 | 20 77 68 69 63 68 20 61 |e.places| which a|
|00005ee0| 72 65 20 74 68 65 20 69 | 6e 74 65 72 73 65 63 74 |re the i|ntersect|
|00005ef0| 69 6f 6e 20 6f 66 20 74 | 68 65 20 65 6e 76 65 6c |ion of t|he envel|
|00005f00| 6f 70 65 20 66 6f 72 20 | 24 66 24 20 77 69 74 68 |ope for |$f$ with|
|00005f10| 0d 6d 61 70 70 69 6e 67 | 20 6c 69 6e 65 73 20 24 |.mapping| lines $|
|00005f20| 5c 4c 5f 73 24 2c 20 66 | 6f 72 20 74 68 6f 73 65 |\L_s$, f|or those|
|00005f30| 20 24 73 24 20 68 61 76 | 69 6e 67 20 24 66 27 27 | $s$ hav|ing $f''|
|00005f40| 28 73 29 20 3d 20 30 24 | 2e 0d 5c 6d 65 64 73 6b |(s) = 0$|..\medsk|
|00005f50| 69 70 0d 0d 7b 5c 62 66 | 20 50 72 6f 6f 66 7d 20 |ip..{\bf| Proof} |
|00005f60| 20 53 69 6e 63 65 20 74 | 68 65 20 56 69 73 75 61 | Since t|he Visua|
|00005f70| 6c 69 7a 65 72 20 6f 6e | 6c 79 20 64 69 73 70 6c |lizer on|ly displ|
|00005f80| 61 79 73 20 74 68 65 20 | 65 6e 76 65 6c 6f 70 65 |ays the |envelope|
|00005f90| 0d 66 6f 72 20 64 65 63 | 72 65 61 73 69 6e 67 20 |.for dec|reasing |
|00005fa0| 66 75 6e 63 74 69 6f 6e | 73 2c 20 77 65 20 77 69 |function|s, we wi|
|00005fb0| 6c 6c 20 61 73 73 75 6d | 65 20 24 66 27 28 73 29 |ll assum|e $f'(s)|
|00005fc0| 20 3c 20 30 24 2c 20 73 | 6f 20 74 68 61 74 0d 24 | < 0$, s|o that.$|
|00005fd0| 5c 7c 66 27 28 73 29 5c | 7c 20 3d 20 2d 66 27 28 |\|f'(s)\|| = -f'(|
|00005fe0| 73 29 24 2e 20 41 20 6e | 65 61 72 6c 79 20 69 64 |s)$. A n|early id|
|00005ff0| 65 6e 74 69 63 61 6c 20 | 70 72 6f 6f 66 20 77 6f |entical |proof wo|
|00006000| 72 6b 73 20 66 6f 72 0d | 70 6c 61 63 65 73 20 77 |rks for.|places w|
|00006010| 68 65 72 65 20 24 66 27 | 28 73 29 20 3e 20 30 24 |here $f'|(s) > 0$|
|00006020| 2e 20 53 69 6e 63 65 20 | 63 75 73 70 73 20 6f 63 |. Since |cusps oc|
|00006030| 63 75 72 20 61 74 20 70 | 6c 61 63 65 73 20 77 68 |cur at p|laces wh|
|00006040| 65 72 65 0d 24 5c 66 5f | 74 27 28 73 29 3d 5c 76 |ere.$\f_|t'(s)=\v|
|00006050| 65 63 30 24 2c 20 77 65 | 20 63 61 6c 63 75 6c 61 |ec0$, we| calcula|
|00006060| 74 65 20 74 68 69 73 20 | 74 61 6e 67 65 6e 74 20 |te this |tangent |
|00006070| 76 65 63 74 6f 72 3a 0d | 24 24 5c 66 5f 74 27 28 |vector:.|$$\f_t'(|
|00006080| 73 29 20 3d 20 5c 42 69 | 67 6c 28 74 76 5f 73 27 |s) = \Bi|gl(tv_s'|
|00006090| 2c 5c 20 31 2b 5c 62 69 | 67 6c 28 66 27 28 73 29 |,\ 1+\bi|gl(f'(s)|
|000060a0| 2d 31 5c 62 69 67 72 29 | 76 5f 73 74 20 2b 0d 5c |-1\bigr)|v_st +.\|
|000060b0| 62 69 67 6c 28 66 28 73 | 29 2d 73 5c 62 69 67 72 |bigl(f(s|)-s\bigr|
|000060c0| 29 76 5f 73 27 74 5c 42 | 69 67 72 29 24 24 0d 0d |)v_s't\B|igr)$$..|
|000060d0| 5c 6e 6f 69 6e 64 65 6e | 74 20 77 68 65 72 65 20 |\noinden|t where |
|000060e0| 24 76 5f 73 27 3d 20 2d | 4b 66 27 27 28 73 29 24 |$v_s'= -|Kf''(s)$|
|000060f0| 20 73 69 6e 63 65 20 24 | 5c 7c 66 27 28 73 29 5c | since $|\|f'(s)\|
|00006100| 7c 3d 2d 66 27 28 73 29 | 24 2e 0d 0d 54 68 65 20 ||=-f'(s)|$...The |
|00006110| 73 74 61 72 74 69 6e 67 | 20 63 75 72 76 65 20 24 |starting| curve $|
|00006120| 5c 66 5f 30 24 20 69 73 | 20 61 20 76 65 72 74 69 |\f_0$ is| a verti|
|00006130| 63 61 6c 20 6c 69 6e 65 | 2c 20 73 6f 20 68 61 73 |cal line|, so has|
|00006140| 20 6e 6f 20 63 75 73 70 | 73 2c 0d 68 65 6e 63 65 | no cusp|s,.hence|
|00006150| 20 77 65 20 6d 61 79 20 | 61 73 73 75 6d 65 20 24 | we may |assume $|
|00006160| 74 5c 6e 65 30 24 3b 20 | 74 68 65 20 6d 69 6e 69 |t\ne0$; |the mini|
|00006170| 6d 61 6c 20 76 65 6c 6f | 63 69 74 79 20 24 4b 24 |mal velo|city $K$|
|00006180| 20 69 73 20 61 6c 73 6f | 0d 6e 6f 6e 2d 7a 65 72 | is also|.non-zer|
|00006190| 6f 2c 20 73 6f 20 24 74 | 76 5f 73 27 3d 30 5c 69 |o, so $t|v_s'=0\i|
|000061a0| 66 66 20 76 5f 73 27 3d | 30 5c 69 66 66 20 2d 4b |ff v_s'=|0\iff -K|
|000061b0| 66 27 27 28 73 29 3d 30 | 5c 69 66 66 20 66 27 27 |f''(s)=0|\iff f''|
|000061c0| 28 73 29 3d 30 24 2e 0d | 54 68 69 73 20 62 65 69 |(s)=0$..|This bei|
|000061d0| 6e 67 20 74 68 65 20 63 | 61 73 65 2c 20 77 65 20 |ng the c|ase, we |
|000061e0| 73 65 65 20 74 68 61 74 | 0d 24 24 0d 5c 66 5f 74 |see that|.$$.\f_t|
|000061f0| 27 28 73 29 3d 5c 76 65 | 63 30 5c 69 66 66 20 66 |'(s)=\ve|c0\iff f|
|00006200| 27 27 28 73 29 3d 30 5c | 61 6e 64 20 74 3d 7b 31 |''(s)=0\|and t={1|
|00006210| 5c 6f 76 65 72 0d 76 5f | 73 5c 62 69 67 6c 28 31 |\over.v_|s\bigl(1|
|00006220| 2d 66 27 28 73 29 5c 62 | 69 67 72 29 7d 2e 24 24 |-f'(s)\b|igr)}.$$|
|00006230| 0d 0d 53 75 62 73 74 69 | 74 75 74 69 6e 67 20 74 |..Substi|tuting t|
|00006240| 68 69 73 20 76 61 6c 75 | 65 20 6f 66 20 24 74 24 |his valu|e of $t$|
|00006250| 20 69 6e 74 6f 20 74 68 | 65 20 66 6f 72 6d 75 6c | into th|e formul|
|00006260| 61 20 66 6f 72 20 24 5c | 66 5f 74 28 73 29 24 0d |a for $\|f_t(s)$.|
|00006270| 74 65 6c 6c 20 75 73 20 | 74 68 61 74 20 74 68 65 |tell us |that the|
|00006280| 20 63 75 73 70 20 6d 75 | 73 74 20 62 65 20 74 68 | cusp mu|st be th|
|00006290| 65 20 70 6f 69 6e 74 0d | 24 24 0d 5c 6c 65 66 74 |e point.|$$.\left|
|000062a0| 28 7b 31 5c 6f 76 65 72 | 31 2d 66 27 28 73 29 7d |({1\over|1-f'(s)}|
|000062b0| 2c 5c 20 73 2b 7b 66 28 | 73 29 2d 73 5c 6f 76 65 |,\ s+{f(|s)-s\ove|
|000062c0| 72 31 2d 66 27 28 73 29 | 7d 5c 72 69 67 68 74 29 |r1-f'(s)|}\right)|
|000062d0| 0d 3d 5c 6c 65 66 74 28 | 7b 31 5c 6f 76 65 72 31 |.=\left(|{1\over1|
|000062e0| 2d 66 27 28 73 29 7d 2c | 5c 20 7b 66 28 73 29 2d |-f'(s)},|\ {f(s)-|
|000062f0| 73 66 27 28 73 29 5c 6f | 76 65 72 31 2d 66 27 28 |sf'(s)\o|ver1-f'(|
|00006300| 73 29 7d 5c 72 69 67 68 | 74 29 2e 24 24 0d 0d 41 |s)}\righ|t).$$..A|
|00006310| 70 70 6c 79 69 6e 67 20 | 74 68 65 20 64 65 73 63 |pplying |the desc|
|00006320| 72 69 70 74 69 6f 6e 20 | 6f 66 20 74 68 65 20 65 |ription |of the e|
|00006330| 6e 76 65 6c 6f 70 65 20 | 67 69 76 65 6e 20 62 79 |nvelope |given by|
|00006340| 20 50 72 6f 70 6f 73 69 | 74 69 6f 6e 0d 31 20 6e | Proposi|tion.1 n|
|00006350| 6f 77 20 63 6f 6d 70 6c | 65 74 65 73 20 74 68 65 |ow compl|etes the|
|00006360| 20 70 72 6f 6f 66 2e 0d | 5c 62 69 67 73 6b 69 70 | proof..|\bigskip|
|00006370| 0d 0d 5c 62 65 67 69 6e | 73 65 63 74 69 6f 6e 20 |..\begin|section |
|00006380| 7b 43 6f 6e 63 6c 75 73 | 69 6f 6e 73 7d 0d 0d 54 |{Conclus|ions}..T|
|00006390| 68 65 20 44 79 6e 61 6d | 69 63 20 46 75 6e 63 74 |he Dynam|ic Funct|
|000063a0| 69 6f 6e 20 56 69 73 75 | 61 6c 69 7a 65 72 20 70 |ion Visu|alizer p|
|000063b0| 72 65 73 65 6e 74 73 20 | 6e 65 77 20 61 6e 64 20 |resents |new and |
|000063c0| 69 6c 6c 75 6d 69 6e 61 | 74 69 6e 67 0d 70 69 63 |illumina|ting.pic|
|000063d0| 74 75 72 65 73 20 6f 66 | 20 66 75 6e 63 74 69 6f |tures of| functio|
|000063e0| 6e 73 20 63 6f 6e 73 69 | 64 65 72 65 64 20 6e 6f |ns consi|dered no|
|000063f0| 74 20 61 73 20 73 74 61 | 74 69 63 0d 67 72 61 70 |t as sta|tic.grap|
+--------+-------------------------+-------------------------+--------+--------+
Only 25.0 KB of data is shown above.